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 The accuracy of modern astronomical observations so high that in order to 

understand what we see and how you can, you must use meaningful relativistic 

models of the observable processes. Effect of relativity can’t be reduced in this case 

to small corrections of the Newtonian model. On the contrary, the whole concept of 

astronomical reference systems and astronomical observations should be revised and 

adapted to the framework of the theory of relativity.   (S.Klioner, 1995) 

 

Problems. Objectives 
Physical processes observed in different coordinate reference systems are 

different in time. On the measured coordinate time we can’t confirm nor their 

identity, nor the accuracy of the measured values: «It is a common mistake to believe 

that intervals of proper time 1τ∆  and 2τ∆  measured by different observers can be “uniquely” 

and “naturally” compared to each other. The only way to do so in General Relativity is to define 

a 4-dimensional relativistic reference system having coordinate time t, establish a relativistic 

procedure of coordinate synchronization of clock with respect to t, and convert the intervals of 

proper time 1τ∆  and 2τ∆  of  each observer into corresponding intervals of coordinate time 

1t∆  and 2t∆ . These two intervals of coordinate time can indeed be compared directly». 

(Klioner, Capitaine, Folkner, Guinot, Huang, Kopeikin, Pitjeva, Seidelmann and Soffel, 2009). 

Because of the uncertainty of the observed intervals of pulsar time which are 

determined by the physical conditions that are known very approximately, it can 

not be compared pulsar and atomic time scales to reveal the instabilities in AT: “If 

physical phenomena (intrinsic irregularities of the pulsar rotation, propagation, ephemerides of  the 

solar system, etc…) introduced no error to the prediction of the arrival times of its pulses, the pulsar 

would realize an ideal pulsar time.  If, in addition, the measurement noise was also negligible, the only 

source of error in AT-PT would be AT itself. In this ideal case, however, we still have to perform the 

adjustment of the pulsar parameters because the position, proper motion, period of rotation and its 

derivative are unknown. If we had  an exact knowledge of their values, PT would be perfect and AT-PT 

would reveal exactly the instabilities in AT” (G. Petit,  P. Tavella, 1996). 

Pulsar time as Time of Arrivals (TOAs) obtained by fitting of the physical 

parameters, doesn’t permit to interpret the post-fit residuals as difference of the 

pulsar and atomic time for their mutual synchronization: “The problem is that the 

timing measurements of pulsars are obtained only after a global fit has provided the necessary 

physical parameters, as these are not known apriori with sufficient accuracy. <…>For this 

reason it is not possible to interpret the post-fit residuals as pure differences of pulsar time and 

atomic time” (B.Guinot, G.Petit, 1991). 

Our approach, in general, is to find analytical relation of the pulsar time 

intervals and the physical parameters so that the numerical values of these 

parameters should be determined and best matched with measured values of the 

observed intervals. Analytical relations and numerical values should be extended to 

both, the barycentric and topocentric reference system. From fitting can be 

excluded any parameters that can’t be obtained directly from observations. 
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Parametric Model of the Pulsar Time 
  

Analytical form of the pulsar time intervals is reduced to Maclaurin power series:  
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R  – condition of convergence of the series.  

Observed events of pulsar radiation is expressed as a function of pulse number N 

in the frequency domain:  
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As frequency and period together with their derivatives are interconnected:  
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the Maclaurin series of the observed pulsar events are identical in frequency and 

time domain: 
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PT intervals, expressed by the rotation parameters of the pulsar in the time domain: 
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Fig.1. The parametric components of  the PT intervals (2) of the PSR J1509+5531:  

NPPPT 00 )( =       at 0P =0,739681922904 s  (MJD 49904.0, [7] )   

2
05,0)( NPPPPT && =   at P&  = 4,99821⋅10-15 s⋅s-1 [8]  
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  of  (2), together with 0P , P& ).  
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Consistency of the observed rotation parameters on the age span 
 

The equation of the observed intervals of  PT  in accordance with (2) is: 
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Here are: PTi  is the numerical values of the observed intervals obtained from the 

planetary ephemeris; 
*

0P , P& , P&&  are the pulsar rotation parameters obtained by solving equation (3); 

iα  is divergence of series  (3) of the PTi  approximated by the rotation parameters 

of pulsar. 

By parametric approximation of the intervals PTi (3) counted from the initial 

observed pulsar event, the fixed rotation period and its derivatives on the initial 

epoch in accordance with the power series expansion Maclaurin (2), are defined. 

It is obvious, for any choice of the epoch of initial event, the value of period 

will be different, taking into account the gap between epochs and the derivatives 

P& , P&& . The corresponding settings of rotation parameters also satisfy the 

convergence of the series expansion (3) for any extension in the vicinity specified 

by the variable NPt
*

0= : 
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Here are:
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Values of Ni, determined by the equation (3), unlike the calculated ratio (2), 

are not integer due to random variations in the pulse time of arrival (propagation, 

error of AT, ephemeris of the Solar system, fitting, etc.). Founded in accordance 

with the equation (3) the real values Ni are different from integer value by 
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determined by the observed pulse phase shift ii t
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within the current period of rotation.  

Real value )( ii NN ∆+  includes himself in the solution of equation (3), in 

addition to the 
*

0P , P& , P&& . It corresponds to the minimum of random variations of 

the divergence iα  and matches the phase of the observed event radiation 

determined by the stable rotation parameters of the pulsar at any real values of  Ni. 

Unmodeled variations of the observed intervals of the coherent pulsar 

radiation are limited a nanosecond range values, although the scattering of the time 

of pulse arrival can be up to several milliseconds. 

Parametric model of PT firmly detects the second derivative of the period by 

the cubic component )(РPT &&  in the observed intervals, the value of which is only 

about 1-2 mks within a 2-year observation (Figure 1). From observations PSR 

J1509 +5531 on the radio telescope LPA was found the numerical value P&& = 

3,0669⋅10-29 s-1, which is agreed with the period *
0P  and its derivative P&  in 

accordance with (4).  
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For comparison, at the specified in the ATNF Pulsar Catalogue [8] value υ&&  

for PSR J1509 +5531 corresponds to P&& =–2,82⋅10-26 s-1. This value of P&& shows 

anomalous discrepancy of the second derivative due to the unmodeled variations of 

pulse TOAs and residual deviations. This fact have been noted by Hobbs, Lyne and 

Kramer in the fundamental investigation [9]: «The observed  values υ&&  for the majority of 

pulsars are not caused by magnetic dipole radiation or by any other systematic loss of rotational 

energy, but are dominated by the amount of timing noise present in the residuals and the data 

span».  

Our observations has shown that for some pulsars, as В0809+74, В1919+21, 

the contribution of the second derivative during about 2 yr. observations, is 

negligible, it does not reach even the nanosecond threshold of detection. For these 

pulsars the right side of the equation (3) is limited by two components of the power 

series expansion only: 
2

00 5,0 NPPNPPT &+= . 

 

Parametric invariance of the PT intervals in the coordinate systems 
 

According to the principle of relativity, which has formulated Poincare 

(1906), all physical processes occurring in any inertial system under the same 

conditions, are identical and correspond to the metric of four-dimensional space-

time defined by the invariant interval 
222222 )()()()()( dZdYdXdTcd −−−=σ .    (5) 

Spatial coordinates and time in the invariant (5) are related by direct and inverse 

Lorentz transformations that define common local time T for any points in three-

dimensional space: 

Direct:
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;  Т ′ – changed local time of the T. 

Lorentz transformations overcome effects of different conditions of 

observation in the coordinate systems due to movement, current position of the 

observer, signal propagation time, thus leads physical processes to common 

conditions of observations. 

By developing and generalizing the principle of relativity of Poincare, A. 

Logunov (1987) extended it without any changes physical entity to non-inertial 

reference systems as well, by showing that the interval (5) is invariant in respect 

any coordinate system [5].  

Equation of  the PT intervals (3) transformed into the accelerated topocentric 

and inertial barycentric coordinate systems, are respectively [6]:  
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Left parts of the equations (6), (7) are interpreted as observed topocentric 

TTobs and barycentric TBobs intervals.  The right parts are the intervals TTcalc and 

TBcalc which are calculated according to the observed rotation parameters of pulsar 

obtained by approximation of the TTobs and TBobs. 

On the example of the pulsar B0809 +74  Figure 2 shows the intervals TTobs 

and TBobs and their difference on the two-year observations 2006 – 2008 yrs. at 

the radio telescope LPA FIAN (Pushchino). 
 

 
 

 
а) the observed intervals (up)        b) differences of the observed and calculated 

and their difference (down)          intervals of ТТ (up) and ТВ (down) 

Fig.2. Observed topocentric (ТТ) and baricentric (ТВ) intervals of the PSR 

В0809+74 (left), inconsistency of the intervals in the coordinate systems (right) 
 

Monotonically growing intervals TTobs and TBobs have a cyclical changes of their 

difference (left, up) due to the orbital motion of the Earth around the Sun (left, 

down). At these intervals in accordance with equations (6) and (7) have been 

determined the values of the rotation period Р*ТТ  and  Р*ТВ on the epoch MJD of 

the observed pulse counted in local coordinate time scales:  

Р*ТТ = 1.29224151775083 s  at  MJDТТ = 54080.0098 

Р*ТВ = 1.29224151775088 s  at  MJDТВ = 54080.0137 

Difference in the values of the observed rotation period in the coordinate systems 

corresponds to the difference of  the epoch of pulse observed in the coordinate 

systems:  

86400)(** ⋅−+= TTTBTTTB MJDMJDPPP & , s.   (8) 

Here are: Р& = 1,676⋅10
-16

 s⋅ s-1 [7]; TTobs – ТВobs = – 332.96872 s (LPA, Fig. 2a) 
       

Note that the value of period in the Cat. [7]: P = 1.292241446861(…) s at MJD = 

49162.0(…) is consistent with the (8), but precision is insufficient for nanosecond 

accuracy and subnanosecond resolution of the measured intervals of pulsar time. 

This is an evidence of the principle of relativity: the physical process of 

periodic radiation of pulsar observed in barycentric and topocentric coordinate 

systems under the same conditions, is the same. The numerical values of the 

observed rotation period are coincide in any coordinate systems at the same epoch 

of local time.  
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Fig.2b presents the differences ТTobs–ТTcalc and ТВobs–ТВcalc that show 

inconsistency of intervals expressed in the metric of General relativity (GR) based 

on the numerical ephemeris, and metric of Special relativity (SR) based on the 

parametric form of  PT intervals, in both topocentric and barycentric coordinate 

systems. 

The differences of observed and calculated intervals are located in the same 

range of values in both coordinate systems. Standard statistical evaluation of their 

small inconsistency is about of 20 ns within the two-year span. This inconsistency  

can be associated with the inaccuracy of coordinate transformations of the intervals 

from metric GR to metric SR and unmodeled variations of  the atomic time scales 

using for measuring of TOAs. 

Thus, the intervals of coordinate pulsar time, determined by the observed 

rotation parameters, are synchronized  and can indeed be compared directly in the 

coordinate systems.  

 

Conclusion 
 

The identity of the pulsar time intervals obtained in numerical form by the 

planetary ephemeris and approximated in analytical form by the rotation 

parameters of the pulsar, confirm the equivalence of the metric GR and metric SR. 

The rotation parameters of the pulsar obtained from the equations of the 

observed intervals, are the same in any coordinate system at coincide epoch of 

local coordinate time, irrespective of choice of the initial epoch and duration of 

observation.  

Intervals of coordinate pulsar time, which are determined by the observed 

rotation parameters with inconsistency within 10
-18

-10
-19

 for 40-year duration of 

observations, are the precise astronomical 4-dimensional relativistic reference 

measure within the Solar system that are 2-3 orders exceeds of the atomic clock 

standards. 
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