Refinements on precession, Nutation, and Wobble of the Earth

Véronique Dehant, Royal Observatory of Belgium

rigid Earth nutation

AN I

Earth response

Forced Nutations

oceanic/atmospheric corrections

Non-rigid Earth nutation model

Itatio 1S

Earth interior model

comparison with observation

Earth rotation changes due to the core; core-mantle coupling

 \rightarrow coupling mechanisms: topographic torque gravitational torque viscous torque electromagnetic torque classically this talk

Electromagnetic torque + viscous torque: dissipative Outer core electrical conductivity: known from

- Outer core electrical conductivity: known from laboratory experiments: 5 10⁵ S m⁻¹ (Stacey & Anderson 2001).
- Lowermost mantle electrical conductivity (~200 m layer at the base of the mantle): unknown but has to be lower than that of the core.

 $\sigma_{\rm m}$ = 10 S m⁻¹, 5 10⁴ S m⁻¹, 5 10⁵ S m⁻¹

- RMS of the radial magnetic field at the CMB: from surface magnetic field measurements: > 0.3 mT.
- Viscosity of the outer core fluid close to the CMB:
 molecular viscosity: ~10⁻⁶ m² s⁻¹ (laboratory experiments

and ab initio computations).

eddy viscosity: < 10⁻⁴ m² s⁻¹ (Buffett & Christensen 2007).

Constraints on the physical properties of the CMB

Viscosity and Radial Uniform Magnetic Field at the CMB

Coupling model used: Buffet et al. 2002 for EM and Mathews & Guo 2005 for viscomagnetic

From Koot et al. 2010

Earth rotation changes due to the core; core-mantle coupling

 \rightarrow coupling mechanisms: topographic torque gravitational torque viscous torque (P electromagnetic torque (j) How to explain high adopted negligible magnetic field? model

Core Angular Momentum exchange due to **topographic** torque at CMB

pressure at CMB

Core-mantle boundary topography (<2km)</p>
Difficult, challenging
but cannot be ruled out

e.g. Hide 1977

Topographic torque computation

- Aim at obtaining torque and associated effects on nutation
- Strategy:
 - Establish the motion equations and boundary conditions in the fluid;
 - Compute analytically the solutions;
 - Obtain the dynamic pressure as a function of the physical parameters;
 - Determine the topographic torque.
- Assessment: Comparison with Wu and Wahr (1997) who used a numerical technique

Differential equations and boundary conditions

Linearized Navier-Stokes equation:

Earth rotation changes due to the core; core-mantle coupling + Core stratification \rightarrow coupling mechanisms: topographic torque gravitational torque viscous torque electromagnetic torque adopted model

Topography, stratification, and magnetism

chemical interactions between the core and the mantle

Better understanding of the Earth interior!

 $\frac{\star \star \star \star}{\star \star \star}$ ROB

Precession, nutation, and wobble of the Earth

V. Dehant

Royal Observatory of Belgium

P. M. Mathews

University of Madras, India

Available soon...

THANK YOU FOR YOUR ATTENTION