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1. Introduction

HEN a collection of material particles S experience relative

displacements, It Is no possible to define unambiguously a
rotational motion of the set. In these situations it Is assigned to S a
reference system Oxyz (the “body axes”) with origin in Its barycen-
ter O and connected with it In a prescribed way.

Y doing so, the rotation of the particles Is identified with the ro-

tation of the body axes with respect to some Iinertial, or quasi—
Inertial, reference system OXY Z. This rotation admits a precise
definition in mathematical terms.

HERE are different possibilities to connect the body axes Oxyz
with the considered set of particles (Munk & McDonald 1960).
From the point of view of simplifying the equations of motion, one
convenient method Is to employ the so—called Tisserand systems
(Tisserand 1891).

2. Tisserand systems

O Introduce Tisserand systems, let us write the velocity, relative
to OXY Z, of a particle of S with position x; and mass m,; as

—

Vi=0 X T; + 0;(d). (1)

The vector @ Is, at this stage, arbitrary and common for the set S.
In contrast ;(&), the deformation velocity (Moritz & Mueller 1987),
depends on the material particle : and the particular choice of @.

Tisserand systems can be defined by any of the following condi-
tions that fix w to a particular value wr:

(a) The angular momentum of S

E:}jm(@x@) (2)

1€S
is [ = | w7 (Tisserand 1891), where | Is the matrix of inertia of S
(b) The kinetic energy of S associated to the deformation velocity

Ly L
Taet(Wr) = 52 m;U; (W) (3)
€S
IS minimum (Jeffreys 1976)
(c) The angular momentum of S related with the deformation ve-
locity

h(wr) = > m [ x Ui(wr) (4)
€S
IS the null vector (Tisserand 1891)

From Egs. (1) and (3), the deformation kinetic energy can be writ-
ten as (Escapa 2011)

- 1
Taet (@) =T — L& +§L3Ic3, (5)

where 7 Is the kinetic energy of S. Hence, for an arbitrary vector A
different from 0, we have

. I 1o -
E&GHJQ:7@@D—LA+AMH5AM. (6)

If we consider condition (a), defining the angular momentum of the
system L, In Eqg. (6), we get

S - -
Toes (97 + X) = Taer (@r) = 531X (7)
Since the matrix of inertia Is definite positive, we have that
lo = S L
§>\I>\>O,>\€R3,>\7AO. (8)

Therefore, Eq. (7) implies that 7, (0) takes its minimum at &y, i.e.,
condition (b).

4. Tisserand systems evolution

HE angular velocity wy, considered as a known function of time,
determines the rotational kinematics of the body axes, but not
Its orientation in an univocal manner (Tisserand 1891).

Specifically, from the components of &y In the OXY Z system, we
can construct the skew—symmetric matrix

0 —sz(t) wTy(t)
sz(t) 0 —WTX (t) . (9)
—wTy(t) Wrx (t) 0

Y (t) =

It allows defining a rotation matrix R(¢) that brings the OXY Z sys-
tem to the body axes through (Wintner 1941)

27(t) = —R, (10)

where the superscript 7' denotes the transpose of a matrix. The
solution of this linear differential equation is given by

R(t) = R (ty) exp ( /tt ZT(s)ds> , (11)

R (ty) providing the numerical value of R(¢) at the epoch ¢,.

In this way, besides any of the conditions (a), (b), or (c), the specifi-
cation of a particular Tisserand system requires providing explicitly
the Initial orientation of the body axes relative to OXY ~Z.

3. Equivalence of the conditions

HE former characterizations turn out to be equivalent, that is

to say, (a) = (b), (b) = (c), and (c) = (a). The second and
third implications are detailed In the existing literature (e.g., Moritz
& Mueller 1987). Let us focus on the first one.
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