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1. Introduction

WHEN a collection of material particles S experience relative
displacements, it is no possible to define unambiguously a

rotational motion of the set. In these situations it is assigned to S a
reference system Oxyz (the “body axes”) with origin in its barycen-
ter O and connected with it in a prescribed way.

BY doing so, the rotation of the particles is identified with the ro-
tation of the body axes with respect to some inertial, or quasi–

inertial, reference system OXY Z. This rotation admits a precise
definition in mathematical terms.

THERE are different possibilities to connect the body axes Oxyz

with the considered set of particles (Munk & McDonald 1960).
From the point of view of simplifying the equations of motion, one
convenient method is to employ the so–called Tisserand systems
(Tisserand 1891).

2. Tisserand systems

TO introduce Tisserand systems, let us write the velocity, relative
to OXY Z, of a particle of S with position ~xi and mass mi as

~Vi = ~ω × ~xi + ~vi(~ω). (1)

The vector ~ω is, at this stage, arbitrary and common for the set S.
In contrast ~vi(~ω), the deformation velocity (Moritz & Mueller 1987),
depends on the material particle i and the particular choice of ~ω.

Tisserand systems can be defined by any of the following condi-
tions that fix ~ω to a particular value ~ωT :

(a)The angular momentum of S

~L =
∑

i∈S

mi

(

~xi × ~Vi

)

(2)

is ~L = I ~ωT (Tisserand 1891), where I is the matrix of inertia of S

(b)The kinetic energy of S associated to the deformation velocity

Tdef( ~ωT ) =
1

2

∑

i∈S

mi~vi( ~ωT )
2 (3)

is minimum (Jeffreys 1976)

(c)The angular momentum of S related with the deformation ve-
locity

~h( ~ωT ) =
∑

i∈S

mi [~xi × ~vi( ~ωT )] (4)

is the null vector (Tisserand 1891)

3. Equivalence of the conditions

THE former characterizations turn out to be equivalent, that is
to say, (a) ⇒ (b), (b) ⇒ (c), and (c) ⇒ (a). The second and

third implications are detailed in the existing literature (e.g., Moritz
& Mueller 1987). Let us focus on the first one.

From Eqs. (1) and (3), the deformation kinetic energy can be writ-
ten as (Escapa 2011)

Tdef (~ω) = T − ~L~ω +
1

2
~ω I ~ω, (5)

where T is the kinetic energy of S. Hence, for an arbitrary vector ~λ
different from ~0, we have

Tdef

(

~ω + ~λ
)

= Tdef (~ω)− ~L ~λ + ~λ I ~ω +
1

2
~λ I~λ. (6)

If we consider condition (a), defining the angular momentum of the
system ~L, in Eq. (6), we get

Tdef

(

~ωT + ~λ
)

− Tdef (~ωT ) =
1

2
~λ I~λ. (7)

Since the matrix of inertia is definite positive, we have that

1

2
~λ I~λ > 0, ~λ ∈ R

3, ~λ 6= ~0. (8)

Therefore, Eq. (7) implies that Tdef (~ω) takes its minimum at ~ωT , i.e.,
condition (b).

4. Tisserand systems evolution

THE angular velocity ~ωT , considered as a known function of time,
determines the rotational kinematics of the body axes, but not

its orientation in an univocal manner (Tisserand 1891).

Specifically, from the components of ~ωT in the OXY Z system, we
can construct the skew–symmetric matrix

ΣT (t) =







0 −ωTZ(t) ωTY (t)

ωTZ(t) 0 −ωTX(t)

−ωTY (t) ωTX(t) 0






. (9)

It allows defining a rotation matrix R(t) that brings the OXY Z sys-
tem to the body axes through (Wintner 1941)

ΣT (t) =
dRT

dt
R, (10)

where the superscript T denotes the transpose of a matrix. The
solution of this linear differential equation is given by

R(t) = R (t0) exp

(

−

∫ t

t0

ΣT (s)ds

)

, (11)

R (t0) providing the numerical value of R(t) at the epoch t0.

In this way, besides any of the conditions (a), (b), or (c), the specifi-
cation of a particular Tisserand system requires providing explicitly
the initial orientation of the body axes relative to OXY Z.

References

•Escapa, A.: Celest. Mech. Dyn. Astr., Vol. 110, 99–142, 2011

•Jeffreys, H.: The Earth. Cambridge University Press, 1976

•Moritz, H. & Mueller, I.: Earth Rotation. Frederic Ungar, 1987
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