

T. Baenas¹, J.M. Ferrándiz¹, A. Escapa^{1,2} and J. Getino³

¹Dept. of Applied Mathematics Dept. University of Alicante. Spain ²Dept. of Mechanical, Informatics and Aeroespace Engineering. University of León. Spain ³Dept. of Applied Mathematics. University of Valladolid. Spain

EFFECTS OF THE TIDAL MASS REDISTRIBUTION ON THE EARTH ROTATION

Journées Systèmes de Référence Spatio-Temporels 22-24 September 2014. St. Petersburg

23rd Sept. 2014

Index

- 1. Introduction
- 2. Results
- 3. Conclusions

- The gravitational action of the Moon and the Sun on the deformable Earth originates a redistribution of its mass, and thus a variation in its kinetic energy related with the change of the Earth inertia tensor.
- Besides, the redistribution produces an additional term in the gravitational potential energy, commonly referred as tidal potential of redistribution.
- The effects on the Earth rotation were previously and partially exposed in
 - ✓ <u>Kubo (1991, 2011, 2012), Getino & Ferrándiz (1995, 2001), Souchay &</u> <u>Folgueira (2000), Escapa *et al.* (2004), Escapa (2011): Hamiltonian approach, simplified elastic response.
 </u>
 - ✓ Lambert et al. (2002), Lambert & Mathews (2006, 2008): SOS equations approach (Sasao et al. 1980), generalized elastic response.

- The basic scheme for the study of the rotation of the deformable Earth, with the Hamiltonian approach, is summarized in:
 - ✓ Use of the Hamiltonian formalism analogous to the rigid Earth (Kinoshita 1977), including the Lie-Hori perturbation method (Hori 1966).
 - ✓ Decoupling the elasticity problem from the rotational one: Moon and Sun are perturbed and perturbing bodies, with separated contributions in the Hamilton function.

- In Mathews *et al.* analytical formulation, the contributions of the Earth mass redistribution are calculated in two steps:
 - \checkmark The contribution of the angular momentum (equivalent to T_t) due to inertia tensor change is calculated by the transfer function method (MHB) 2000).
 - ✓ The potential energy of redistribution effect is derived by Lambert & Mathews (2006), based on SOS equations.
- In the Hamiltonian approach both contributions are terms of the Hamiltonian function at hand (therefore necessarly consistent each other):

$$H = T_0 + T_t + V_1 + E + V_t$$

Different perturbations

- Hamilton equations
 Canonical perturbation methods

- An *ab initio* reconstruction of the whole dynamical model has been done in order to include a more general Earth rheology, following the Love Number approach (Munk & MacDonald 1960).
- Let us recall that assuming a rheological model based in Smith (1974), Wahr (1979) and IERS (2010) for the elastic/anelastic response of the Earth, the second order harmonic components of the redistribution potential admit a truncated development in complex spherical harmonics in the form

$$V_m(r,\theta,\phi) = \underbrace{k_{2m}}_{r} \left(\frac{a_E}{r}\right)^3 Y_{2m}\left(\theta,\phi\right) + \underbrace{k_{2m}^{(+)}}_{r} \left(\frac{a_E}{r}\right)^5 Y_{4m}\left(\theta,\phi\right), \ r \ge a_E$$

Generalized Love Numbers, dependent on:

- ✓ Harmonic order, m
- ✓ Excitation frequencies

In magnitude,

$$k_{2m}^{(+)} \left(\frac{a_E}{r}\right)^5 \ll k_{2m} \left(\frac{a_E}{r}\right)^3$$

Pág. 7

- The main elements for the construction are:
 - ✓ The expression of the tidal redistribution potential, given by the sum (over p and q, representing Moon and Sun) of terms of the form

$$V_{t;p,q} = \frac{a_E^5}{r^3 r'^3} Gm_p m_q \left[k_{20} \mathscr{C}_{20} \mathscr{C}_{20}' + k_{21} \frac{1}{3} \left(\mathscr{C}_{21} \mathscr{C}_{21}' + \mathscr{S}_{21} \mathscr{S}_{21}' \right) + k_{22} \frac{1}{12} \left(\mathscr{C}_{22} \mathscr{C}_{22}' + \mathscr{S}_{22} \mathscr{S}_{22}' \right) \right]$$

where \mathscr{C}_{2j} , \mathscr{S}_{2j} and \mathscr{C}'_{2j} , \mathscr{S}'_{2j} stand for the second order real spherical harmonics, related to perturbed bodies and perturbing ones respectively.

✓ The expression of the time dependent inertia tensor, $I(t) = I_0 + I_1(t)$,

$$\mathbf{I}_{1} = \left(\frac{a}{r'}\right)^{3} \begin{pmatrix} \kappa_{20}\mathscr{C}_{20}' - \frac{1}{2}\kappa_{22}\mathscr{C}_{22}' & -\frac{1}{2}\kappa_{22}\mathscr{S}_{22}' & -\kappa_{21}\mathscr{C}_{21}' \\ -\frac{1}{2}\kappa_{22}\mathscr{S}_{22}' & \kappa_{20}\mathscr{C}_{20}' + \frac{1}{2}\kappa_{22}\mathscr{C}_{22}' & -\kappa_{21}\mathscr{S}_{21}' \\ -\kappa_{21}\mathscr{C}_{21}' & -\kappa_{21}\mathscr{S}_{21}' & -2\kappa_{20}\mathscr{C}_{20}' \end{pmatrix}$$

where $\kappa_{m;p} = \frac{1}{3} k_{2m} m_p a_E^2 \left(\frac{a_E}{a_p} \right)^3$ is the constant defined by Kubo (1991).

• The modelling of the anelastic behaviour of the deformable Earth requires the *ab initio* introduction of complex functions that generalize the Love Numbers (following e.g. IERS Conventions 2010). The validity of the previous expressions with this substitution was provided e.g. in Baenas dissertation (2014).

 $\bar{k}_{2m,j} = \left| \bar{k}_{2m,j} \right| e^{i \varepsilon_{2m,j}}$ (j subindex stands for orbital frequencies dependence)

 All the expressions must be expanded in terms of an Andoyer set of canonical variables to establish the transformation that relates the celestial and terrestrial (Tisserand mean) reference systems.

Then we proceed like in the Kinoshita (1977) approach.

Fig. 1: Euler and Andoyer variables

• The orbital motion of the perturbing bodies is expressed in trigonometric series giving the spherical harmonics,

$$\begin{pmatrix} \frac{a}{r} \end{pmatrix}^{3} \mathscr{C}_{20}(\eta', \alpha') = -\sum_{i} A_{i}^{(0)} \cos \Theta_{i},$$

$$\begin{pmatrix} \frac{a}{r} \end{pmatrix}^{3} \mathscr{C}_{21}(\eta', \alpha') = 3\sum_{i} \bar{A}_{i}^{(1)} \sin \Theta_{i}, \quad \left(\frac{a}{r}\right)^{3} \mathscr{S}_{21}(\eta', \alpha') = 3\sum_{i} A_{i}^{(1)} \cos \Theta_{i},$$

$$\begin{pmatrix} \frac{a}{r} \end{pmatrix}^{3} \mathscr{C}_{22}(\eta', \alpha') = 3\sum_{i} A_{i}^{(2)} \cos \Theta_{i}, \quad \left(\frac{a}{r}\right)^{3} \mathscr{S}_{22}(\eta', \alpha') = 3\sum_{i} \bar{A}_{i}^{(2)} \sin \Theta_{i},$$

depending on the fundamental arguments of nutation (linear combinations of Delaunay variables of the orbital problem).

$$\Theta_i(t) = m_{1i}l + m_{2i}l' + m_{3i}F + m_{4i}D + m_{5i}\Omega$$

• The first order Lie-Hori perturbation equations are then applied (Baenas 2014). With this formulation, analytical expressions for the components of the solution can be obtained.

Index

- 1. Introduction
- 2. Results
- 3. Conclusions

Analytical expressions

• As an example, we include here the expression for the precession velocities (computed from the secular part of the Hamiltonian):

$$\delta_T n_{\lambda} = 0$$

$$\delta_T n_I = 0$$

$$\delta_V n_{\lambda} = -\frac{1}{\sin I^*} \frac{1}{CH_d} \sum_{p,q}^{M,S} \sum_{\substack{i,j;\tau,\epsilon \\ \tau \Theta_i^* - \epsilon \tilde{\Theta}_j = 0}} \sum_{m}^{0,1,2} |\bar{\kappa}_{2m,j;p}| k_q T_{ijpq,m}^{(n_{\lambda})}(\tau,\epsilon) \cos \varepsilon_{2m,j}$$

$$\delta_V n_I = -\frac{1}{\sin I^*} \frac{1}{CH_d} \sum_{p,q}^{M,S} \sum_{\substack{i,j;\tau,\epsilon \\ \tau \Theta_i^* - \epsilon \tilde{\Theta}_j = 0}} \sum_{m}^{0,1,2} |\bar{\kappa}_{2m,j;p}| k_q T_{ijpq,m}^{(n_I)}(\tau,\epsilon) \sin \varepsilon_{2m,j}$$

- The subindexes T and V stand, respectively, for the contributions of the kinetic energy of redistribution and the potential energy of redistribution.
- $-\lambda^*$ and $-I^*$ are the precessional longitude and obliquity.
- The non-zero $\delta_V n_I$ contribution is a purely anelastic effect (stands for any $\varepsilon_{2m,j} \neq 0$) (in accordance with Lambert & Mathews 2006).

Analytical expressions

• As an example, we include here the expression for the precession velocities (computed from the secular part of the Hamiltonian):

• $T_{ijpq,m}$ quantities are particular combinations of the *B*, *C* and *D* functions of the orbital coefficients $A_i^{(j)}$ defined by Kinoshita (1977).

$$T_{ijpq,m}^{(n_{\lambda})}(\tau,\epsilon) = \frac{9}{4} \frac{\partial B_{i;p}^{*}}{\partial I^{*}} \tilde{B}_{j;q} \delta_{m0} + 3 \frac{\partial C_{i;p}^{*}}{\partial I^{*}} \tilde{C}_{j;q} \delta_{m1} + \frac{3}{4} \frac{\partial D_{i;p}^{*}}{\partial I^{*}} \tilde{D}_{j;q} \delta_{m2}$$

$$T_{ijpq,m}^{(n_{I})}(\tau,\epsilon) = \tau m_{5i} \left(\frac{9}{4} B_{i;p}^{*} \tilde{B}_{j;q} \delta_{m0} - 3 C_{i;p}^{*} \tilde{C}_{j;q} \delta_{m1} - \frac{3}{4} D_{i;p}^{*} \tilde{D}_{j;q} \delta_{m2} \right)$$

Pág. 12

Numerical representations for different models

Simplified elastic model

- Spherical non-perturbed state without rotation
- Real Love Numbers, frequency independent

$$\bar{k}_{2m,j} = k \in \mathbb{R}
\rightarrow |\bar{\kappa}_{2m,j;p}| = \kappa_p,
\rightarrow \varepsilon_{2m,j} = 0.$$

Simple anelastic model: constant time delay

- Ellipsoidal non-perturbed state with rotation
- Complex Love Numbers, frequency dependent (*ad hoc* functional dependence)

$$\bar{k}_{2m,j} = k_{2m} e^{i\varepsilon_{2m,j}} \in \mathbb{C}$$

$$\rightarrow |\bar{\kappa}_{2m,j;p}| = \kappa_{2m;p},$$

$$\rightarrow \varepsilon_{2m,j} = -\Delta t \{ m\omega_E - [\epsilon - \delta_{m0} (1+\epsilon)] \tilde{n}_j \} .$$

Generalized elastic model

- Ellipsoidal non-perturbed state with rotation
- Real Love Numbers, with either nominal value for frequency band, or frequency dependent

$$\bar{k}_{2m,j} = k_{2m,j} \in \mathbb{R}$$

$$\rightarrow |\bar{\kappa}_{2m,j;p}| = \kappa_{2m,j;p},$$

$$\rightarrow \varepsilon_{2m,j} = 0.$$

Generalized anelastic model

- Ellipsoidal non-perturbed state with rotation
- Complex Love Numbers, with either a nominal value for each frequency band, or frequency dependent

$$\bar{k}_{2m,j} = |\bar{k}_{2m,j}| e^{i\varepsilon_{2m,j}} \in \mathbb{C} \rightarrow \bar{\kappa}_{2m,j;p} = |\bar{\kappa}_{2m,j;p}| e^{i\varepsilon_{2m,j}}$$

Numerical representations: precession velocities

Precession in longitude and obliquity: tidal redistribution potential contribution.

	Zona	al	Tesseral	Sectorial	Total
	B_0	$B-B_0$	C	D	
Case 1: Elastic E	arth (simplified m	odel)			
$\delta n_{\lambda} \; [\text{mas/cent}]$	42.0639	-3.9604	-64.1250	26.0214	0.0000
δH	-27.34×10^{-9}	2.59×10^{-9}	41.75×10^{-9}	-16.94×10^{-9}	0.00×10^{-9}
$\delta n_I \; [\mathrm{mas/cent}]$	0.0000	0.0000	0.0000	0.0000	0.0000
Case 2: Elastic E	arth. Real Love N	umbers with n	ominal value for	frequency band (IERS 2010)
$\delta n_{\lambda} \; [\text{mas/cent}]$	42.8254	-4.0321	-65.1642	26.7401	0.3693
δH	-27.88×10^{-9}	2.62×10^{-9}	42.42×10^{-9}	-17.41×10^{-9}	-0.24×10^{-9}
$\delta n_I \; [\mathrm{mas/cent}]$	0.0000	0.0000	0.0000	0.0000	0.0000
Case 3: Anelastic	Earth. Constant	time delay mod	del		
$\delta n_{\lambda} \; [\text{mas/cent}]$	42.8254	-4.0321	-65.1513	26.7194	0.3615
δH	-27.87×10^{-9}	2.62×10^{-9}	42.41×10^{-9}	-17.39×10^{-9}	-0.24×10^{-9}
$\delta n_I \; [\mathrm{mas/cent}]$	0.0000	0.0000	0.5103	6.0390	6.5493
Case 4a: Anelasti	ic Earth. Complex	Love Numbers	s with nominal \mathbf{v}	value for frequency	v band (IERS 2010)
$\delta n_{\lambda} \; [\text{mas/cent}]$	43.7900	-4.1229	-65.9603	27.0102	0.7171
δH	-28.51×10^{-9}	2.68×10^{-9}	42.94×10^{-9}	-17.58×10^{-9}	-0.47×10^{-9}
$\delta n_I \; [\mathrm{mas/cent}]$	0.0000	0.0000	0.1301	0.6656	0.7957
Case 4b: Anelast	ic Earth. Complex	Love Number	s frequency depe	endent (IERS 2010	0)
$\delta n_{\lambda} \; [\text{mas/cent}]$	43.7900	-4.1389	-60.6554	27.0102	6.0059
δH	-28.51×10^{-9}	2.69×10^{-9}	39.49×10^{-9}	-17.58×10^{-9}	-3.91×10^{-9}
$\delta n_I \; [\mathrm{mas/cent}]$	0.0000	-0.0118	0.1209	0.6656	0.7748

Numerical representations: precession velocities

Precession in longitude and obliquity: tidal redistribution potential contribution.								
Zonal	Tesseral	Sectorial	Total					
	$B-B_0$ C	D						
Case 1: Elastic Earth (simplified model	1)							
$\delta n_{\lambda} \; [\text{mas/cent}] \qquad 42.0639$	-3.9604 -64.1250	26.0214	0.0000					
$\delta H = -27.34 \times 10^{-9} = 2.5$	59×10^{-9} 41.75×10^{-9}	-16.94×10^{-9}	0.00×10^{-9}					
$\delta n_I [\mathrm{mas/cent}] \qquad 0.0000$	0.0000 0.0000	0.0000	0.0000					
Case 2: Elastic Earth. Real Love Numb	ers with nominal value for	frequency band (IEI	RS 2010)					
$\delta n_{\lambda} \ [\text{mas/cent}] \qquad 42.8254$	-4.0321 -65.1642	26.7401	0.3693					
		1×10^{-9}	-0.24×10^{-9}					
δn_I The permanent tide co	ontribution is comp	outed	0.0000					
$Case$ separately. B_0 contributi	ion must be include	d or						
δn_{λ} removed depending or	n the dynamical m	odel 26.7194	0.3615					
considered for the rigid	nort of the Forth in	$\times 10^{-9}$	-0.24×10^{-9}					
δn_I considered for the rigid	part of the Earth in	erua 6.0390	6.5493					
Case tensor (zero tide or tide fr	ree).	frequency ba	and (IERS 2010)					
δn_{λ}		27.0102	0.7171					
Total here corresponds to	tide free.	3×10^{-9}	-0.47×10^{-9}					
$\frac{\delta n_I}{2}$		0.6656	0.7957					
Case \downarrow . Anotasue Laron, Complex Lov	ve transets nequency depe.	$\frac{1}{1} \text{ERS } 2010)$	0.0070					
$\partial n_{\lambda} \text{ [mas/cent]} $ 43.7900	-4.1389 -60.6554	27.0102	6.0059					
$\delta H = -28.51 \times 10^{-9} - 2.6$	0.9×10^{-9} 39.49×10^{-9}	-17.58×10^{-9}	-3.91×10^{-3}					
$on_I [mas/cent] = 0.0000$	-0.0118 0.1209	0.6656	0.7748					

Numerical representations: precession velocities

Precession in longitude and obliquity: tidal redistribution potential contribution.

		Zona	al	Tesseral	Tesseral Sectorial		
		B_0	$B-B_0$	C	D		
Case 1: Elastic Ea	rth ((simplified m	odel)				
$\delta n_{\lambda} \; [\text{mas/cent}]$		42.0639	-3.9604	-64.1250	26.0214	0.0000	
δH	-27	1.34×10^{-9}	2.59×10^{-9}	41.75×10^{-9}	-16.94×10^{-9}	0.00×10^{-9}	
$\delta n_I \; [\mathrm{mas/cent}]$						0.0000	
Case 2: Elastic Ea	rth.	An addi	tive correc	ction δH t	to the dynamic	al 010)	
$\delta n_{\lambda} \; [\text{mas/cent}]$		ellinticity	related wi	ith δn_1 cont	tribution must b	0.3693	
δH	-27	consider	ad in order	to oncure ∞	neistoney hotwoo	0.24×10^{-9}	
$\delta n_I \; [\mathrm{mas/cent}]$		considere	ea in order	to ensure co	insistency betwee	0.0000	
Case 3: Anelastic	Eart	observat	ional and th	eoretical ma	gnitudes		
$\delta n_{\lambda} \; [\text{mas/cent}]$						0.3615	
δH	-27		δ	$H \delta n_{\lambda}$		0.24×10^{-9}	
$\delta n_I \; [\mathrm{mas/cent}]$			11	$-=-\frac{\pi}{2}$	-	6.5493	
Case 4a: Anelastic	e Ear		П	d $n_{\lambda,obs}$	5	IERS 2010)	
$\delta n_{\lambda} \; [\text{mas/cent}]$		10000	1,1== 0	00.0000		0.7171	
δH	-28	5.51×10^{-9}	2.68×10^{-9}	42.94×10^{-9}	-17.58×10^{-9}	-0.47×10^{-9}	
$\delta n_I \; [\mathrm{mas/cent}]$		0.0000	0.0000	0.1301	0.6656	0.7957	
Case 4b: Anelastic	e Ear	th. Complex	Love Numbers	s frequ <mark>ency depe</mark>	endent (IERS 2010)		
$\delta n_{\lambda} [\mathrm{mas/cent}]$		43 7900	-4.1389	-60 6554	27 0102	6.0059	
δH	-28	0.51×10^{-9}	2.69×10^{-9}	39.49×10^{-9}	-17.58×10^{-9}	-3.91×10^{-9}	
$\delta n_I \; [\mathrm{mas/cent}]$		0.0000	-0.0118	0.1209	0.6656	0.7748	

Case 4b

Numerical representations: nutations, T_t contribution

Typical order of magnitude: a few mas

Obliquity $[\mu as]$

Case 2

Case 3

Case 4a

Argument Longitude $[\mu as]$ $l \quad l' \quad F \quad D \quad \Omega$ Case 2 Case 4b Case 1Case 3 Case 4a Case 1

Nutations: contribution of the kinetic energy of redistribution.

				In-pha	se terms					
+0 +0 +0 +0 +1	+1053.97	+1071.05	+1070.83	+1084.14	+933.35	-312.32	-317.38	-317.32	-321.26	-274.99
+0 +0 +0 +0 +2	-20.58	-20.92	-20.91	-21.17	-18.00	+7.51	+7.63	+7.63	+7.73	+6.55
+0 $+1$ $+0$ $+0$ $+0$	+0.29	+0.29	+0.29	+0.30	-43.06	-42.22	-42.90	-42.89	-43.43	-58.19
+0 -1 +2 -2 +2	+19.64	+19.96	+19.95	+20.20	+19.71	-7.17	-7.29	-7.29	-7.38	-6.69
+0 +0 +2 -2 +2	-2346.96	-2385.00	-2384.50	-2414.13	-2338.50	+857.33	+871.23	+871.05	+881.87	+844.09
+0 $+1$ $+2$ -2 $+2$	-137.89	-140.13	-140.10	-141.84	-138.48	+50.40	+51.21	+51.20	+51.84	+50.26
+1 +0 +0 +0 +0	+27.40	+27.85	+27.85	+28.19	+21.65	-302.19	-307.08	-307.02	-310.83	-311.39
+0 +0 +2 +0 +2	-5395.72	-5483.16	-5482.17	-5550.15	-5537.17	+1992.35	+2024.64	+2024.28	+2049.37	+2043.26
+0 +0 +2 +0 +1	-1105.11	-1123.02	-1122.81	-1136.74	-1134.83	+341.03	+346.56	+346.50	+350.79	+349.43
+1 +0 +2 +0 +2	-1072.18	-1089.56	-1089.37	-1102.87	-1101.47	+397.97	+404.42	+404.36	+409.36	+408.67
				Out-of-p	hase terms					
+0 +0 +0 +0 +1			-21.89	-5.23	-0.40			-6.49	-1.55	+0.04
+0 +0 +0 +0 +2			+0.43	+0.10	-0.01			+0.16	+0.04	-0.01
+0 $+1$ $+0$ $+0$ $+0$			+0.00	-0.00	-1.04			-0.88	-0.21	+0.26
+0 -1 +2 -2 +2			-0.41	-0.10	-0.05			-0.15	-0.04	-0.03
+0 +0 +2 -2 +2			+48.48	+11.65	+9.14			+17.69	+4.26	+3.06
+0 $+1$ $+2$ -2 $+2$			+2.84	+0.68	+0.57			+1.04	+0.25	+0.20
+1 +0 +0 +0 +0			+0.00	-0.14	+0.07			-6.27	-1.50	-1.51
+0 +0 +2 +0 +2			+104.44	+26.79	+26.34			+38.11	+9.89	+9.69
+0 +0 +2 +0 +1			+21.64	+5.49	+5.42			+6.41	+1.69	+1.65
+1 +0 +2 +0 +2			+19.99	+5.32	+5.28			+7.30	+1.98	+1.96

Numerical representations: nutations, V_t contribution

Typical order of magnitude: a few μ as

Nutations: contribution of the tidal potential of redistribution.

Argument		Longitude $[\mu as]$				О	Obliquity [µas]			
l l' F D Ω	Case 1	Case 2	Case 3	Case 4a	Case 4b	Case 1	Case 2	Case 3	Case 4a	Case 4b
				In-pha	se terms					
+0 +0 +0 +0 +1	+0.0000	-0.8459	-0.8101	-0.5385	+5.4095	+0.0000	-0.8633	-0.8434	-1.4738	-11.5748
+0 +0 +0 +0 +2	+0.0000	-0.0245	-0.0246	-0.0679	-1.0599	-0.0000	+0.0138	+0.0138	+0.0381	+0.5897
+0 $+1$ $+0$ $+0$ $+0$	+0.0000	-0.0110	-0.0110	-0.0307	+0.1294	+0.0000	+0.0000	+0.0000	+0.0000	-0.1903
+0 -1 +2 -2 +2	+0.0000	-0.0002	-0.0002	-0.0002	+0.0025	-0.0000	+0.0001	+0.0001	+0.0001	-0.0033
+0 +0 +2 -2 +2	-0.0000	+0.1484	+0.1424	+0.2017	1.8798	+0.0000	-0.0723	-0.0697	-0.1094	-0.9666
+0 $+1$ $+2$ -2 $+2$	-0.0000	+0.0066	+0.0064	+0.0090	+0.0282	+0.0000	-0.0032	-0.0031	-0.0048	-0.0150
+1 +0 +0 +0 +0	+0.0000	+0.0134	+0.0130	+0.0218	+0.0938	+0.0000	+0.0002	+0.0002	+0.0003	+0.0037
+0 +0 +2 +0 +2	+0.0000	-0.0262	-0.0252	-0.0357	-0.2686	-0.0000	+0.0125	+0.0120	+0.0186	+0.1373
+0 +0 +2 +0 +1	+0.0000	+0.0020	+0.0020	+0.0016	-0.0027	-0.0000	+0.0019	+0.0018	+0.0030	+0.0157
+1 +0 +2 +0 +2	+0.0000	+0.0045	+0.0044	+0.0062	+0.0372	+0.0000	-0.0021	-0.0021	-0.0032	-0.0186
+0 $+2$ -2 $+2$ -2	-0.0000	-1.0799	-1.0359	-1.4682	-22.9684	-0.0000	+0.5279	+0.5088	+0.7994	+8.5358
				Out-of-p	hase terms					
+0 +0 +0 +0 +1			+1.4342	+0.0643	+0.1377			+0.2474	+0.3697	+0.0393
+0 +0 +0 +0 +2			-0.0612	-0.0225	+0.0072			-0.0341	-0.0126	+0.0028
+0 $+1$ $+0$ $+0$ $+0$			-0.0280	-0.0102	+0.0049			+0.0000	+0.0000	+0.0045
+0 -1 +2 -2 +2			+0.0001	+0.0000	+0.0008			+0.0000	+0.0000	+0.0005
+0 +0 +2 -2 +2			-0.0967	+0.0421	-0.0089			-0.0226	+0.0256	-0.0001
+0 $+1$ $+2$ -2 $+2$			-0.0043	+0.0019	-0.0013			-0.0010	+0.0011	-0.0005
+1 +0 +0 +0 +0			-0.0007	+0.0054	+0.0032			-0.0001	-0.0001	+0.0001
+0 +0 +2 +0 +2			+0.0156	-0.0075	-0.0009			+0.0043	-0.0043	-0.0008
+0 +0 +2 +0 +1			-0.0030	+0.0000	+0.0001			-0.0002	-0.0007	-0.0002
+1 +0 +2 +0 +2			-0.0024	+0.0013	+0.0004			-0.0007	+0.0008	+0.0003
+0 $+2$ -2 $+2$ -2			+0.7160	-0.3070	-0.4111			+0.1678	-0.1868	-0.1500

Numerical representations: comparative of nutations

$T_t + V_t$: DIFFERENCE between simplified elastic and generalized anelastic models											
		Argume	nt		Period	Period Nut. longitude [μ as]			Nut. obliquity [μ as]		
l	l'	F	D	Ω	(days)	In	Out	In	Out		
+0	+0	+0	+0	+1	-6793,48	-115,2105	-0,2623	25,7552	0,0793		
+0	+0	+0	+0	+2	-3396,74	1,5201	-0,0028	-0,3703	-0,0072		
+0	+1	+0	+0	+0	365,26	-43,2206	-1,0351	-16,1603	0,2645		
+0	-1	+2	-2	+2	365,25	0,0725	-0,0492	0,4767	-0,0295		
+0	+0	+2	-2	+2	182,63	10,3398	9,1311	-14,2066	3,0599		
+0	+1	+2	-2	+2	121,75	-0,5618	0,5687	-0,155	0,1995		
+1	+0	+0	+0	+0	27,55	-5,6562	0,0732	-9,1963	-1,5099		
+0	+0	+2	+0	+2	13,66	-141,7186	26,3391	51,0473	9,6892		
+0	+0	+2	+0	+1	13,63	-29,7227	5,4201	8,4157	1,6498		
+1	+0	-2	+0	-2	9,13	-29,2528	5,2804	10,6814	1,9603		

Index

- 1. Introduction
- 2. Results
- 3. Conclusions

- The Hamiltonian approach to Earth rotation has been extended in a consistent way, including more general rheological models for the mantle elasticity.
- New analytical expressions for the full motion of the Earth figure axis have been derived, including a treatment of the effects of the tidal mass redistribution.
- The numerical results show a significant contribution with the frequency dependence of the Love Numbers. This is due to the existence of resonance processes in the diurnal frequency band (FCN, see e.g. IERS Conv. 2010).
- New non-negligible secular and periodic contributions have been found, the differences with respect to the simplified elastic case reach the following orders of magnitude:

Velocity of precession in longitude:	~ 6 mas/cJ
Velocity of precession in obliquity:	~ 0.8 mas/cJ
Nutation in longitude:	$\sim 140~\mu$ as
Nutation in obliquity:	$\sim 50~\mu$ as

This work has been partially supported by the Spanish government through the MINECO projects I+D+I AYA201022039-C02-01, AYA2010-22039-C02-02, and Generalitat Valenciana project GV/2014/072.