Deformation of the South-Eastern Baltic Shield from GNSS observations

V.L. Gorshkov1, N.V. Scherbakova1, A.V. Mohnatkin2, S.S. Smirnov1,2, S.D. Petrov2, D.A. Trofimov2, T.V. Guseva3, V.P. Perederin3, N. Rosenberg3

1Pulkovo Observatory, 2St.Petersburg State University, 3Earth Physics Institute

September 24, 2014
Geologic setting of the South-Eastern Baltic Shield

- City of St. Petersburg marks a border between Baltic Shield and East-European Platform;
- The landscape in the area changes from Archean (3.5 billion years) to Carboniferous (350 million years) along the line of 300 km from North to South;
- Previous GNSS-measurements revealed deformations in the area, confirmed by geologic and seismic studies;
- Recent GNSS-measurements (Gorshkov et al. 2012) revealed a possible slow rotation of the South-Eastern Baltic Shield with respect to the East-European Platform.
Geologic map of the South-Eastern Baltic shield
Previous results: Gorshkov et al. 2012
Aim of study

- Gather available GNSS-measurements in the area for the last few years;
- Process the GNSS-measurements within one common model;
- Examine the station coordinate time series;
- Estimate the latitudinal and meridional velocities from station coordinate time series;
- Estimate the deformation field from the station velocities.
GNSS stations
GNSS stations: closeup
GNSS processing

- Input data: 38 stations for 1992-2014;
- Software: Gipsy/Oasis 6.3;
- Type of solution: PPP (Precise Point Positioning);
- Absolute antennae calibration, orbit and clock corrections IGb08, IERS EOPs, VMF1GRID troposphere, GOT4.8 ocean load tides, IERS solid Earth tides, GOT4.8ac geocenter model, IMLS atmospheric loading;
- Station coordinate time series edited for antennae changes and outliers;
- Station velocities estimated by linear fits;
- Deformation field estimated by use of the algorithm of Teza et al. (2008).
Station velocities

2 mm/year
Deformation field

5 nanostrain/year
compress extension
Conclusions

- The border area between the Baltic Shield and the East-European Platform is subject to a weak meridional compression;
- The slow counterclockwise rotation of the South-Eastern Baltic Shield with respect to the East European platform is likely to be confirmed;
- Some stations show different (even opposite) velocities and need to be more carefully examined.