POLE TIDE TRIGGERS OF SEISMICITY

JOURNÉES 2014
St.-Petersburg, RUSSIA

Victor Gorshkov
Pulkovo observatory

Abbreviations: PT – Pole tide, LST – Lunisolar tide
EQ – Earthquake
CMT – Harvard Centroid-Moment tensor

DATA and METHOD

There were used 32264 EQ events from CMT (1976-2014) to search the trace of PT in seismicity after declustering events for Mw > 7.2 by (Uhrhammer, 1986).

Results

- **Phase PT**
 - $\Delta t (kg) = 1.2 \text{ e}^{0.65g (0.05-1.0)}$ and $\Delta t (kg) = 1.2 \text{ e}^{0.65g (0.05-1.0)}$

- **PT generated shear τ and normal α_0 stresses for CMT (points) against background of polar variations (X,Y).**

- **PT**
 - has an influence on seismic activity of thrust EQ with $M_{w} > 5.5$ with confidence level 0.9. Other faulting type EQ and with $M_{w} > 5.5$ are indifferent relative to PT influence.

Frequency distribution of shear stress phase calculated for various variants of thrust EQ

<table>
<thead>
<tr>
<th>Variants</th>
<th>Mw (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.0</td>
<td>0.5</td>
</tr>
<tr>
<td>7.5</td>
<td>1.0</td>
</tr>
<tr>
<td>8.0</td>
<td>1.5</td>
</tr>
<tr>
<td>8.5</td>
<td>2.0</td>
</tr>
</tbody>
</table>

There are two maxima of PT influence on thrust EQ near both extremes (min and max) of shear stress.

This result could explain the 0.6 year periodicity in seismic intensity.

Conclusions

- **Pole tide influence on seismic intensity is revealed only for thrust type of EQ with 5% reliability.**
- **This influence falls with rise of M and vanishes for $M_{w} > 5.5$.**
- **There are two maxima of this influence approximately coinciding with both extreme of shear stresses. This result could explain 0.6-year spectral peak in seismic intensity.**
- **Pole tide influence on seismic intensity for time of Pole wobble damping (< 100 mas) is actually noise. This could explain 6-7 year periodicity in seismic process.**
- **Symphesis of shear and normal stresses for thrust EQ type (see ψ by $\psi > 90^\circ$) could explain the exciting of these EQ by weak PT induced stress variations.**

Literature:

- **Uhrhammer, R.** Characteristics of Northern and Central California seismicity // Earthquake Hazard. 57(1). 219.

POLE TIDE TRIGGERS OF SEISMICITY

METHOD

There were used 32264 EQ events from CMT (1976-2014) to search the trace of PT in seismicity after declustering events for Mw > 7.2 by (Uhrhammer, 1986).

Results

- **Phase PT**
 - $\Delta t (kg) = 1.2 \text{ e}^{0.65g (0.05-1.0)}$ and $\Delta t (kg) = 1.2 \text{ e}^{0.65g (0.05-1.0)}$

- **PT generated shear τ and normal α_0 stresses for CMT (points) against background of polar variations (X,Y).**

- **PT**
 - has an influence on seismic activity of thrust EQ with $M_{w} > 5.5$ with confidence level 0.9. Other faulting type EQ and with $M_{w} > 5.5$ are indifferent relative to PT influence.

Frequency distribution of shear stress phase calculated for various variants of thrust EQ

<table>
<thead>
<tr>
<th>Variants</th>
<th>Mw (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.0</td>
<td>0.5</td>
</tr>
<tr>
<td>7.5</td>
<td>1.0</td>
</tr>
<tr>
<td>8.0</td>
<td>1.5</td>
</tr>
<tr>
<td>8.5</td>
<td>2.0</td>
</tr>
</tbody>
</table>

There are two maxima of PT influence on thrust EQ near both extremes (min and max) of shear stress.

This result could explain the 0.6 year periodicity in seismic intensity.

Conclusions

- **Pole tide influence on seismic intensity is revealed only for thrust type of EQ with 5% reliability.**
- **This influence falls with rise of M and vanishes for $M_{w} > 5.5$.**
- **There are two maxima of this influence approximately coinciding with both extreme of shear stresses. This result could explain 0.6-year spectral peak in seismic intensity.**
- **Pole tide influence on seismic intensity for time of Pole wobble damping (< 100 mas) is actually noise. This could explain 6-7 year periodicity in seismic process.**
- **Symphesis of shear and normal stresses for thrust EQ type (see ψ by $\psi > 90^\circ$) could explain the exciting of these EQ by weak PT induced stress variations.**

Literature:

- **Uhrhammer, R.** Characteristics of Northern and Central California seismicity // Earthquake Hazard. 57(1). 219.