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Light propagation is crucial in the

1) Range observable

modelling of Sol. Sys. observations

Emitter

worldline

Transmitter

worldline
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(⌧A, ⌫A)

OB
(⌧B , ⌫B)

• Difference in proper time

• Depends on the difference 
in coord. time (amongst 
other parameters)

tB � tA

Range = c(⌧B � ⌧A)
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Light propagation is crucial in the

2) Doppler observable

modelling of Sol. Sys. observations

• Ratio of proper frequency D =
⌫B
⌫A
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Light propagation is crucial in the

3) Astrometric observable & VLBI

modelling of Sol. Sys. observations

Wave vector kµB

Emitter

worldline
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worldline
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Eµ
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Local Ref. Syst.

or tetrad

• Direction of observation of the light ray in a local reference 
system (or tetrad)
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How to determine the light propagation ?
• At the geometric optics approximation: photons follow null 

geodesics
dkµ

d�
+ �µ

↵�k
↵k� = 0 kµkµ = 0

k

µ =
dx

µ

d�

Wave vector kµB

Wave vector kµA

Emitter

worldline

xA(t)

Receiver

worldline

OA
(tA,xA)

(tB ,xB)

OB

with                   the tangent vector

a Boundary Value Problem5



Methods to solve the null geodesic eqs.
• Full numerical integration of the null geodesic eqs. with a 

shooting method see A. San Miguel, Gen. Rel. Grav. 39, 2025, 2007
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        A. Cadez, U. Kostic, PRD 72, 104024, 2005	


                         A. Cadez, et al, New Astr. 3, 647, 1998

see for example: de Jans, Mem. de l’Ac. Roy. de Bel., 1922	
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• Exact analytical solution for some metrics: Schwarzschild and Kerr 
(solution with Jacobian/Weierstrass elliptic functions)
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Methods to solve the null geodesic eqs.
• Full numerical integration of the null geodesic eqs. with a 

shooting method see A. San Miguel, Gen. Rel. Grav. 39, 2025, 2007

see for example N. Ashby, B. Bertotti, CQG 27, 145013, 2010

• Use of the eikonal equation:  
   - perturbative solution for spherically symmetric space-time

see E. Shapiro, PRL 13, 26, 789, 1964
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… and the Time Transfer Functions

• The (reception) Time Transfer Function - TTF - is defined by

see C. Le Poncin-Lafitte, et al, CQG 21, 4463, 2004	


      P. Teyssandier and C. Le Poncin-Lafitte, CQG 25, 145020, 2008

• The TTF is solution of an eikonal equation well adapted to a 
perturbative expansion

tB � tA = Tr(xA, tB ,xB)
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… and the Time Transfer Functions

• The (reception) Time Transfer Function - TTF - is defined by

see C. Le Poncin-Lafitte, et al, CQG 21, 4463, 2004	


      P. Teyssandier and C. Le Poncin-Lafitte, CQG 25, 145020, 2008

• The TTF is solution of an eikonal equation well adapted to a 
perturbative expansion

tB � tA = Tr(xA, tB ,xB)

• The derivatives of the TTF are of crucial interest since
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Range, Doppler, astrometric observables can be 
written in terms of the TTF and its derivatives
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Post-Minkowskian expansion of the TTF

• A pM expansion of the TTF:

see P. Teyssandier and C. Le Poncin-Lafitte, CQG 25, 145020, 2008

• Computation with an iterative procedure involving integrations 
over a straight line between the emitter and the spatial position 
of the receiver !

• Main advantages:	



- analytical computations relatively easy	



- very well adapted to numerical evaluation

• Example at 1 pM:

with            the straight Mink. null path between em. and rec.z↵(�)
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Analytical results in Schwarzschild space-time

• A pM expansion of the TTF:	



and the corresponding derivatives have been computed up to the 
3rd pM order

see B. Linet and P. Teyssandier, CQG 30, 175008, 2014	


      P. Teyssandier, 2014, arXiv: 1407.4361

• A “simplified” iterative method has been developed for static 
spherically symmetric geometry
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Analytical results in Schwarzschild space-time

• A pM expansion of the TTF:

see B. Linet and P. Teyssandier, CQG 30, 175008, 2014
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see E. Shapiro, PRL 13, 26, 789, 1964

see C. Le Poncin-Lafitte, et al, CQG 21, 4463, 2004	


     S. Klioner, S. Zschocke, CQG 27, 075015, 2010
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Is it necessary to go to the 3rd order?
• In a conjunction geometry, at each order n, there are enhanced 

terms proportional to           

• Ex. with Earth-BepiColombo range (accuracy ~ 10 cm)  
⇒ 2pM term needed

5
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• Ex. with SAGAS: link between 
spacecraft in the outer Solar 
System to measure 𝛾 at10-8  

⇒ accuracy at the mm level  

⇒ 3pM term needed
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 T (3)
enh

1 -5 m 37 cm 1 cm
2 -1.3 m 18 cm 0.6 mm
5 -21 cm 7 mm 15 µm

see P. Teyssandier, 2014, arXiv: 1407.4361  
      A. Hees, S. Bertone, C. Le Poncin-Lafitte, PRD 89, 064045, 2014

(1 + �)n

c c c
10 cm



• Ex. with light deflection for Sun grazing rays: AGP space mission 
(old GAME). Expected accuracy: 𝜇as 
⇒ 3pM term needed

see A. Hees, S. Bertone, C. Le Poncin-Lafitte, PRD 89, 064045, 2014	


      P. Teyssandier, B. Linet, proceedings of JSR 2013, arXiv:1312.3510
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Analytical result around axisymmetric bodies
• Influence of all the multipole moments Jn from the grav. potential

• Influence of Jupiter J2 on the JUNO Doppler  (1𝜇m/s accuracy) 
and for GAIA (10 𝜇as acc.)

see C. Le Poncin-Lafitte, P. Teyssandier, PRD 77, 044029, 2008 for a computation with the TTF	


or S. Kopeikin, J. of Math. Physics 38, 2587, 1997 for another approach
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see A. Hees, et al, accepted in PRD, 2014, arXiv:1406.6600

• terms important for the data analysis for these missions
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What happens if the body is moving ?

• At first pM order, the TTF for uniformly moving bodies can 
easily be derived from the TTF generated by a static body

• All the analytical results computed for a static source can be 
extended in the case of a uniformly moving source

see A. Hees, et al, accepted in PRD, 2014, arXiv:1406.6600

�(xA, tB ,xB) = �(1�NAB .�)�̃(RA + ��RAB ,RB)

� = v/c, � = (1� �2)�1/2

static TTFTTF in the 
moving case with

RXand depends on xX , �
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Time Transfer around a moving body
• moving monopole:  

   - using the previous result:  
 
 
 
 
- also determined by other methods

see A. Hees, et al, accepted in PRD, 2014, arXiv:1406.6600	


      S. Bertone et al, CQG 31, 015021, 2014 for a pN expansion
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where �
Mp

represents the mass monopole contribution and �
Jpn

represents the mass multipoles contribution.
The TTF corresponding to a static monopole is well known [22] and is given by

�̃
Mp

(x
pA

,x
pB

) = 2
GM

p

c2
ln

r
pA

+ r
pB

+R
AB

r
pA

+ r
pB

�R
AB

. (44)

By inserting (44) into (34) and using the substitutions (29), we obtain the TTF in the field of monopoles in uniform
motion as

�
M

(x
A

, t
B

,x
B

) = 2
GM

p

c2
�
p

(1�N

AB

· �
p

) ln
|R

pA

+ �
p

�

p

R
AB

|+R
pB

+ �
p

R
AB

(1� �

p

·N
AB

)

|R
pA

+ �
p

�

p

R
AB

|+R
pB

� �
p

R
AB

(1� �

p

·N
AB

)
, (45)

with R

pX

given by (26a). On the other hand, the mass multipole contribution �
Jpn

has been computed in [27] as

�̃
Jnp(xpA

,x
pB

) = K
pn

nX

m=1


1

(r
pA

+ r
pB

�R
AB

)n�m+1
� 1

(r
pA

+ r
pB

+R
AB

)n�m+1

�
⇥

nm

(x
pA

,x
pB

) , (46a)

with K
pn

⌘ (1 + �)GM
p

J
np

rn
pe

/c2 and

⇥
nm

(x
pA

,x
pB

) = (�1)n�m

0X

i1,...,im

(n�m)!

i1!i2! . . . im!

mY

l=1

[S
l

(x
pA

,x
pB

)]il , (46b)

where the sum
P

0

i1,...,im
denotes the summation over the sets of nonnegative integers i1, i2, . . . , im satisfying the pair

of equations

(
i1 + 2i2 + 3i3 + · · ·+mi

m

= n

i1 + i2 + · · ·+ i
m

= n�m+ 1
(46c)

and where S
l

(x
pA

,x
pB

) is defined by

S
l

(x
pA

,x
pB

) =
1

rl�1
pA

C
(�1/2)
l

✓
k

p

· x
pA

r
pA

◆
+

1

rl�1
pB

C
(�1/2)
l

✓
k

p

· x
pB

r
pB

◆
(46d)

with C
(�1/2)
l

(x) the Gegenbauer polynomial of degree l and of parameter �1/2.
Therefore, the multipole term of the TTF for the case of moving axisymmetric bodies is given by inserting (46)
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      S. Klioner, A & A, 404, 783, 2003
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Time Transfer around a moving body
• moving monopole:  

   - using the previous result:  
 
 
 
 
- also determined by other methods

see A. Hees, et al, accepted in PRD, 2014, arXiv:1406.6600	
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      S. Klioner, A & A, 404, 783, 2003

• moving quadrupole: - using the TTF  
                             - with another method 

see A. Hees, et al, acc. in PRD, 2014, arXiv:1406.6600 

see S. Kopeikin, V. Makarov, PRD, 75, 062002, 2007
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where �
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• moving quadrupole: - using the TTF  
                             - with another method 

see A. Hees, et al, acc. in PRD, 2014, arXiv:1406.6600 

see S. Kopeikin, V. Makarov, PRD, 75, 062002, 2007

• moving axisymmetric bodies: see A. Hees, et al, acc. in PRD, 2014, arXiv:1406.6600 

• moving body with arbitrary static multipoles: slow velocity app.
see M. Soffel, W.-B. Han, arXiv:1409.3743

• arbitrarily moving point masses: numerical expression
see A. Hees, et al, acc. in PRD, 2014, arXiv:1406.6600 15



Ex.: motion of Jupiter
• Influence of Jupiter velocity on the JUNO Doppler  (1𝜇m/s 

accuracy) and for GAIA (10 𝜇as acc.)
GAIA/VLBI

see A. Hees, et al, accepted in PRD, 2014, arXiv:1406.6600

• depend highly on the orbit geometry: conjunction and 
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• In particular: should be reassessed for JUICE orbit

16



Numerical evaluation of the TTF
• Iterative procedure involving integrals over a straight line: 

appropriate for numerical evaluation

see A. Hees, et al, PRD 89, 064045, 201417
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• Numerically efficient ; useful when no analytical solution can be 
found
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Numerical evaluation of the TTF

• Example: Doppler for 30 days of Cassini tracking between 
Jupiter and Saturn (“𝛾 experiment”)

see A. Hees, et al, CQG 29, 235027, 2012

• Effect of the 𝛾 PPN and of Standard Model Extension sTY on 
Cassini Doppler
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• Numerical evaluation appropriate to evaluate effects due to 
alternative theories of gravitation

𝛾 -1 = 5 x 10-5

sTY = 10-5

for SME, see Q. Bailey and A. Kostelecky, PRD 74, 045001, 2006
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Conclusion
• The TTF is a very nice tool to compute the time transfer, the 

Doppler and astrometric (VLBI) observations

see A. Hees, et al, PRD 89, 064045, 2014

• Analytical results found (so far):  
- time transfer in Schwarzschild space-time at 1, 2, 3 pM order  
 
- time transfer around static axisymmetric body 
 
- time transfer around a slowly moving monopole 
 
- time transfer around uniformly moving axisymmetric body

• Useful to assess order of magnitude of different GR effects but 
also effects from alternative theories of gravitation

• Very efficient from a numerical point of view

see A. Hees, et al, CQG 29, 235027, 2012

see A. Hees, et al, accepted in PRD, 2014, arXiv:1406.6600

see S. Bertone et al, CQG 31, 015021, 2014

see C. Le Poncin-Lafitte, P. Teyssandier, PRD 77, 044029, 2008

see B. Linet and P. Teyssandier, CQG 30, 175008, 2014
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