GFZ The consistency of the current conventional Helmholtz Centre Potsdam celestial and terrestrial reference GFZ GERMAN RESEARCH CENTRE POISDAM Helmholtz Centre FOR GEOSCIENCES POTSDAM frames and the conventional EOP series

Robert Heinkelmann¹, Santiago Belda-Palazón^{2,1}, José M. Ferrándiz², Harald Schuh¹

1: Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, Potsdam, Germany, heinkelmann@gfz-potsdam.de 2: University of Alicante, Departamento de Matemática Aplicada, Alicante, Spain

1. MOTIVATION

For applications in Earth sciences, navigation, and astronomy the celestial (ICRF) and terrestrial (ITRF) reference frames as well as the transformations among them (EOP) have to be consistent. The current conventional frames and EOP are

- ITRF2008 based on VLBI, SLR, GNSS and DORIS data until 2008
- ICRF2 based on VLBI data until 2009
- IERS 08 C04 until 2008 consistent with ITRF2008, then extended using a weighted combination of EOP solutions and combinations

A complication for the assessment of the consistency among frames and EOP is that the frames are global parameters, while the EOP are determined as local parameters.

2. APPROACH

Various consistency studies are carried out. First of all, the effect of unmodeled geophysical signals in regularized coordinates of ITRF2008 is the assessed: fixing ("FIXED") and not fixing ("FREE") station coordinates on catalogue values. Next, the EOP are determined using the same VLBI data but fixing different TRFs. Global rotations (from similarity transformations) among frames are compared with the mean EOP differences. Finally, the consistency is evaluated using different a priori EOPs and celestial reference frames.

Software: VieVS with adaptations (GFZ internal version)

Data: geometrically stable sessions of the GFZ VLBI solution (ITRF2013 contribution) from 1984-07-09 to 2013-12-31

TRF	Reference	Comment
ITRF2000	Altamimi et al., 2002	Data until 2000
ITRF2005	Altamimi et al., 2007	Data until 2005
ITRF2008	Altamimi et al., 2011	Data until 2008
VTRF2008	Böckmann et al., 2010	Data until 2008, VLBI-only frame
DTRF2008	Seitz et al., 2012	Data until 2008, different combination approach

Table 1. Different TRFs used in this study

3. UNMODELED GEOPHYSICAL SIGNALS

The differences of the TRFs are assessed by fixing station coordinates on catalogue values. Since station coordinates are usually estimated in VLBI analyses we first assess the effect of this approach. Comparing FIXED vs. FREE w.r.t IERS 08 C04 results in

- strong decrease of the correlation and large rms for x_{pol} , y_{pol} and slightly for dUT1 (table 2)

- **drifts** show similar values using FIXED or FREE approach (exception: y_{pol})
- celestial pole coordinate ΔY shows a small drift (table 2).

EOD	I	rrf2008 fix	ED	I	TRF2008 FR	EE	FIXED vs FREE
EOP	shift	drift	rms	shift	drift	rms	correlation
Δx _{pol} (µas)	-17.4	-2.5 ± 0.5	289.5	-28.2	-2.5 ± 0.5	430.8	0.49
Δy _{pol} (μas)	-0.6	1.2 ± 0.4	238.4	-34.1	4.1 ± 0.5	420.3	0.44
ΔdUT1(μs)	5.7	-0.2 ± 0.03	16.6	6.0	-0.2 ± 0.03	26.0	0.61
ΔX(µas)	-1.2	0.6 ± 0.2	124.5	0.7	0.4 ± 0.2	127.5	0.95
ΔY(µas)	14.5	-3.2 ± 0.2	133.0	15.2	-3.3 ± 0.2	132.7	0.94

Figure 1. (a) WM and (b) WRMS differences between EOP estimated using fixed and free ITRF2008 coordinates

Table 2. EOP residuals (µas or µs for

UT1) w.r.t. IERS 08 C04 between

solutions using fixed and free

ITRF2008 coordinates. Shift (referred

at epoch 2000.0) and linear trends

 (yr^{-1}) are estimated by WLS.

Correlation between both series is

also shown.

Weighted Mean (WM): Fixation of ITRF catalogue values causes insignificant weighted mean differences of the EOP.

Weighted Root Mean Squared (WRMS): Fixation of ITRF catalogue values causes scatter of about 150 µas on the terrestrial pole coordinates (x_{pol} and y_{pol}), 90 µas on dUT1, and 20 µas on the celestial pole coordinates.

4. EOP DIFFERENCES USING DIFFERENT TRF

ITRF2000: large WM, WRMS and shifts (x_{pol}, y_{pol} and dUT1) w.r.t. ITRF2008

VTRF2008: large WM (140 µas), WRMS (120 µas), and drift (-18.6 µas yr⁻¹) for y_{pol} (single-technique vs. multi-technique)

DTRF2008: large WM (160 µas) for dUT1, what is remarkable because both TRF are based on the same data

Celestial pole coordinates do not show significant effects (WM and WRMS about 5)

Figure 2. (a) WM and (b) WRMS differences between EOPestimated by different TRFs w.r.t *ITRF2008*

µas and 10 µas respectively)

Table 2 Differences in EOD (use	TDE		Δx _{pol} (µas)			Δy _{pol} (µas)			∆dUT1 (µs)			ΔX (µas)			ΔY (µas)	
or μs for UT1) between solutions	IKF	shift	drift	rms	shift	drift	rms	shift	drift	rms	shift	drift	rms	shift	drift	rms
using different TRFs w.r.t.	ITRF2005 _{fixed}	10.9	4.8 ± 0.3	129.7	-33.2	-7.6 ± 0.3	143.1	6.8	-0.4 ± 0.01	6.6	-2.5	0.1 ± 0.1	30.6	1.2	0.01 ± 0.1	35.9
ITRF2008. Shift (referred at	ITRF2000 _{fixed}	92.1	16.7 ± 0.9	344.9	-143.5	-7.4 ± 1.2	460.4	5.5	-0.2 ± 0.05	18.5	-1.1	0.1 ± 0.1	31.6	0.9	0.1 ± 0.1	38.9
(vr^{-1}) are estimated by least	VTRF2008 _{fixed}	-28.2	-5.1 ± 0.3	124.4	-38.8	-18.6 ± 0.2	92.8	6.1	-0.2 ± 0.01	5.3	-1.0	0.1 ± 0.1	36.0	0.4	-0.2 ± 0.1	40.3
squared (LS).	DTRF2008 _{fixed}	39.3	-4.3 ± 0.3	101.1	-4.5	0.9 ± 0.2	76.0	11.3	-0.1 ± 0.01	4.3	-0.5	0.1 ± 0.1	28.4	0.5	-0.1 ± 0.1	34.4

5. GLOBAL ROTATIONS (SIMILARITY TRANSFORMATION): ITRF2005 W.R.T. ITRF2008

Figure 3 and table 4. Global rotations (R1, R2, R3) for each VLBI session from similarity transformation versus ERP differences between ITRF2005 w.r.t. ITRF2008. Shift (referred at epoch 2000.0) and drift (yr⁻¹) are shown.

	Trans	sf. (µas)	Differ	. (µas)	Comparison
	shift	drift	shift	drift	std (µas)
R1	-22.4	9.1±0.3	33.0	7.3±0.3	132.6
R2	15.6	-9.4±0.2	-10.1	-5.5±0.3	118.4
R3	108.6	-4.9±0.2	99.3	-6.5±0.2	95.3

Case 2 vs. Case 1 Case 3 vs. Case 1

7. ICRF2 vs. ICRF1-ext.2 ICRF1 ext.2 ICRF2 **ITRF2008 IERS 08 C04** WM differences (ICRF2 vs. ICRF1 ext2) WRMS differences (ICRF2 vs. ICRF1 ext2)

Figure 5. (a) WM and (b) WRMS differences between EOP estimated with ICRF2 and ICRF1 ext. 2.

EOD		ICRF2			ICRF1	
EOP	shift	drift	rms	shift	drift	rms
Δx _{pol}	-17.0	-2.6±0.5	312.4	-22.3	-2.9±0.5	316.3

6. EOP DIFFERENCES USING DIFFERENT A PRIORI EOP

FOR	Ca	se 2 vs. Case	e 1	Ca	ise 3 vs. Cas	e 1
LOP	shift	drift	rms	shift	drift	rms
Δx _{pol}	2.2	-0.3±0.2	66.0	2.0	-0.3±0.2	90.7
Δy _{pol}	-2.7	0.3 ± 0.1	52.8	-3.7	0.5 ± 0.2	77.4
∆dUT1	0.0	0.0 ± 0.01	3.2	-0.1	0.0 ± 0.01	7.0
ΔΧ	-36.1	-1.9 ± 0.5	174.7	2.3	-0.3±0.2	61.4
ΔΥ	92.5	-0.5±0.5	180.7	-1.8	0.3 ± 0.1	64.4

Δx _{pol} Δy _{pol} ΔdUT1 ΔX ΔΥ

∆dUT1 ∆y_{pol} ΔΧ ΔΥ

WRMS differences w.r.t. case 1

Figure 4. (a) WM and (b) WRMS differences between EOP estimated with different a priori EOP.

Table 5. Differences in EOP (μ as or μ s for UT1) between solutions using different a priori EOP series. Shift (referred at epoch 2000.0) and linear trends (yr⁻¹) are estimated by LS.

 1.2 ± 0.4 263.1 8.0 0.6 ± 0.5 268.8 -0.4 Δy_{pol} -0.2 ± 0.03 5.8 -0.2 ± 0.03 18.5 4.7 19.1 **ΔdUT1** 0.7 ± 0.3 135.6 -1.2 8.7 1.3 ± 0.3 147.4 ΔΧ 145.9 -2.1 ± 0.3 162.9 -3.1 ± 0.3 10.0 14.5 ΔΥ

Table 6. Differences in EOP (µas or µs for UT1) between solutions using ICRF2 and ICRF1 ext. 2 w.r.t. IERS 08 C04 series. Shift (referred at epoch 2000.0) and linear trends (yr^{1}) are estimated by WLS.

8. CONCLUSIONS

> When fixing station coordinates ERP are significantly affected by unmodeled geophysical > Impact of CRFs on the EOP is about at the level of the given axes stability of ICRF2 (10 µas) signals. Some approaches to cope with this problem are: and in general very small except for the small ΔY drift. □ Usage of epoch reference frames □ Considering more geophysical signals in the data analysis > Impact of TRFs on the EOP is general larger than the given level of the axes stability of ITRF2008 (80 µas ± 80 µas yr⁻¹ at 2005.0). The multi-technique combination has a large effect □ Extending the TRF coordinate model to seasonal signals on ERP. > Remarkable EOP differences compared to ITRF2008 are: > To achieve consistent CRF, TRF, and EOP, those have to be determined from HELMHOLTZ \Box VTRF2008 y_{pol} : WM ~140 µas, WRMS ~120 µas and drift ~-18.6 µas yr⁻¹ a single combined solution. (ICRF2 is consistent with VTRF2008!) ASSOCIATION \Box DTRF2008 in dUT1: WM ~160 µas (based on the same data!)

Journées Systèmes de Référence Spatio-Temporels. Recent developments and prospects in ground-based and space astrometry. 22 – 24 September 2014. St. Petersburg

