Do we need various assumptions to get a good FCN?

-- A new multiple layer spectral method

Cheng-li Huang, Mian Zhang

Shanghal Astron. Obs., CAS, China

Journees 2014, 21-24 Sept., @St. Petersburg, Russia




contents

. Motivation: FCN

- Methodology:

- Multiple layer spectral method: Finite Element
Method

- Linear Operator Method

. Our FCN results



Study of Free-core-nutation (FCN)

- FCN Is a normal mode of the earth as
the rotating axes of the FOC and of
the mantle don’t coincide,

- a key parameter & key question to
be answered:

- The calculated period of FCN from
traditional theory differs largely | VLBI 4301
from the high-precision obs. SG(GGP)| 4305

- FCN reflects (depends on) the [~ o
physics of the FOC, mantle & CN 458~470

calculated
- FCN Influences strongly the -1yr.
nutation due to I1tsS resonance.

Mantle

No fluid OC? = No FCN !




FCN: Assumptions:

- extra flattening at CMB: +5%: too big to be
consistent with the overall near-HE shape of the
Earth as a whole.

- magnetic/ viscous/topographic couplings @CMB,
. 2"d order (g2) terms effect?

- etc.



Contributions of EMC @CMB to nutation (pas)
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Do /can we really need these

various unproved assumptions to
get a good FCN ?




Multiple layer spectral method (MLSM)

+

Linear Operator Method (LOM)



Finite Element Method (FEM)

- Traditional approach solves one order ellipsoid only.

- FEM can solve more complex models.

r =7 — cos(4¢) * sin* 0

7 =6—0.5(5%cos®f — 3cosf)




Main ldea of FEM

Boundary Surface could be described as:

r= T0+Z’“ﬁ?y¢?(9:¢)

Let’s consider how to solve the dynamic equation:

DT + 200 x DT = —pfly x (o x 1)+ V- §° - Va7 7
- Vo1 - gt - VW9 + V- (V)




Traditional Approach: Equivalent
Spherical Domain

p(r) =r+7h(r,0)

h(r, 0) = —ge(fr)Pg(cosG)



Traditional Approach: Equations of
Simple Example

Governing Equations:
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Traditional Approach:
Direct numerical integration approach

Variables Ordinary Differential Equations
?j?:Unm (dy; 3 (n+1))\ .
dUpm f_; B (f\+2u) y1 T HQPJ;? 2 T V2 yn
| y 4u(30+2p)
=8 dr i N [ pw (A{—Q/{L fr’; ] 1 A_|_2M r,r-y2+
n _ +1 2n(n+1)u(3A42
b3 = Vo | n(n(miw 5 + 5 - o
n anm Unm - Vnm dys 1 1
Yy = Hl ot ) 11 =Lyl ?13‘|‘ ?Jff
| ' ' ! d'y;'f pg  2p(3M2p)
y? — Vlnm [ r\JrQﬂ )r? ] 91~ AJFQ,U yz +
{ . . n
r | _Qyn - Qyn
n_ W T 4  prJd
Y1 = Wam dy? — drCou® + "
— ' —_ i 47TG 1 1
ys = i " . ) \ gﬁ — _ PT;(“+ ) n ﬂ(tj )y? _ %ygl




Traditional Approach:
Direct numerical integration approach

- Give a possible period and
ODESs’ initial values

- Integrate ODEs from center to

surface
- Check the integrated values /

at surface so as to determine

whether the possible period is
veritable

—_




Traditional Approach Problem:
the More Complex Figures ?

@

r=154+1.3sind r=925492cos*0

r=8—cos’0 1 ="7—cos(4¢p) xsin? @ r=6—05(5+cos’d — 3cos0)




FEM: The Whole Domain is
separated into several subdomain

, Earth could be separated
into 3 subdomains:

. Solid inner core
 Fluid outer core

- Solid mantie (crust)




FEM: Express the Equation
in Each Subdomain

The inner and the outer Boundary Surfaces could
be described as:

r = Rout + Z Hmym
Let’s consider how to solve the dynamic equation:

oD2T + 2900 x DT = —pGo x (Do x W)+ V- 5= V(Y- 1)
—~pVé1 - pU - VYV +V - [y(VU)T]



Inner Boundary
Surface
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multiple layer spectral method (MLSM):
Integrate governing egs. in each subdomain

T Rout Ly E 1y (04
f f Ad.in eqv r* sinfdrdbd = 0
=0 Jg=0 JR,+3" g;”}’mw

{I‘rial vectors(functions) ! | Dynamic equation |

We use MLSM instead of direct numerical integration
approach. Variables are expanded in basis function series



MLSM: Galerkin Method

eg, the (2,0) spheroidal displacement field iIs
represented as:

Ima:-:

3= ciogilr) - VY2(6,0)

i=0 r \

coefficients Basis function

eg., trial vector(function) of (2,0) spheroidal Is:

di(r) - VY,(6, ¢)



MLSM: Boundary Conditions

Boundary surface could be described as:

r= T0+ZW?Y$(9:¢)

The Normal vector of boundary surface Is:

T@,a—’a"

90~ o



MLSM: Boundary Conditions turn into surface integral

For scalar continuation condition da =a™ - a” =0
956 or Or o0r Or

—x— 0% oa*x|— X —|dS
| | s1n @ a*|69 6¢|

2 (9—) a—)
f f |—><—| * 0a = sinf x dfdg = 0
6=0 =0 00



MLSM: Combine All Equations

- Combine these equations so as to build a matrix:

- Volume integral of governing equations in each subdomain

. Surface integral of boundary conditions between 2 adjoint
subdomain

- Free surface boundary condition

- No need for the initial value at center. As center condition just

require parameters to be reasonable which is the absence of r
or r°basis terms.



MLSM: Search the Period

- Pick an period and compute the condition

number of the matrix.



Linear Operator Method (LOM)

- Why Use Linear Operator method?

. Generalized Spherical Harmonics(GSH) are a
little bit abstruse. It needs knowledge of
group theory and representation theory.

- Boundary conditions could be easily solved.



Linear Operator Method (LOM)

- Equations is based on spherical harmonics (SH)
with unified form:

[(n—|ml)/2] |
Y, (6,9) = Z c10(n, m, s)(cos )"~ (sin get ™M
s=0

- Each SH can be built up by 3 atoms:

cos 6, sin 6e?, sin e

. |[f we know 3 atoms’ actions on each other, all

computation about SH are obtained.



LOM Example: Product of two Spherical Harmonics

- As we know:
cosOxY,"(0,¢) =di(n,m) «Y" (6,¢) +dr(n,m) * Y," (60, $)

n+l1

sin e * Y;(0, ¢) = dio(n, m)Y4' 0, ¢) + dy1(n,m)Y (6, §)

n+1

sinfe™" x Y0, ¢) = dyp(n,m)Y" (6, §) + dy3(n, m)Y" (6, p)

n+1
. By
[(n—|ml)/2] |
Y, (0,¢) = Z c10(n, m, s)(cos 6)" > (sin et ™P)m
5=0

- We can get

Y™ (6, 9) * Y/(6, p)



LOM Example: Product of a SH and a VSH

. As we know:

cos 0+ S (0, ) =dz(n,m) = S™. (0, ) + dg(n,m) x S™ (6, $)

n+1

+ do(n, m) * T™(6, §)
sin e xS ™(0,¢) =dra(n, m) x S ™10, §) + dys(n, m) * S ™1(6, $)

n+1 n—1

+ dig(n, m) = T™1(6, )

sin e~ « S™(6, ¢) =dy2(n, m) * S "0, §) + dig(n, m) = S ™ (6, p)

n+l

+ dio(n,m) * T™ (6, )

- We can get
Y2(0,¢) * V,Y0, )



LOM Example: Dot-product of two VSH

Vector Spheroidal harmonics (VSH) can be written in
following form:

V. Y™6, ) = Ho[Y™(0, )] * V1 cos 6 + H [Y™(6, $)] * V,(sin 6e* ™)

- Ho and Hi are combination of SH:

[(n—|ml)/2]

Ho[Y™6, $)] = Z (n = 25 — |m|) * c10(n, m, 5)(sin Geieym
s=0
" (COS 9)n—25—|m\—1
[(n—|ml|)/2]
H\[Y,;'(0,$)] = Z Im| * c19(n, m, s)(cos )"~
s=0

x (sin Gt ™)~



LOM Example: Dot-product of two VSH

. If we get:

Vicosd- VY50, ¢)
V,(sin 6¢®) - V,Y?(6, )
V1(sin 0e™?) - V,1Y2(6, ¢)

- We can finally get:

VY™, ¢) - V1Y2(0, ¢)



LOM

- Use this method, we get
. product of
.- 2 SH
-a SH & a VSH
- dot product of 2 VSH
- Cross product of 2 VSH
- gradient of a SH
- curl of a VSH

- divergence of a VSH



LOM: Tensors

- It I1s difficult to represent the stress tensor in a
stand-alone form. But in the equation it only
needs the divergence of the tensor, while In
boundary conditions it only needs the dot-
product of the normal vector and the tensor,
and these two terms can be represented by
the LOM.



Our Preliminary Earth Model

- PREM
- 1 order ellipticity
. 3 layers
+ Without ocean
- 1 layer for solid inner core

- 1 layer for fluid outer core

- 1 layer for mantle and crust (while
10 layers of parameters)



Validation: Tilt-Over-Mode

- The displacement field Is

truncated as: TOM
21,31, 71
I'i+S8,+71;
1+1.8e-2
- Each term Is expanded In
polynomial series, in each 1+1.8e-3
subdomain
N Max—order 1+1.5e-4
T = Z cix P [FX VYN0, )]
i=0 | 1+2.0e-5

>

Order of Polynomial in trial function



FCN Result

- The displacement field iIs
truncated as:

43011
21, Tl , 71
I'y+S85,+715
- FCN Is very sensitive to the 43015
ellipticity at CMB. Our value is
equivalent to the most authors’: 458~470

2.54656*1073,

Our
Approach

- Result converges when
polynomial orderi_.,>= 4.




Discussion : Why MLSM is Better?

- avoliding derivatives of some parameters which are

not precise in earth model. 0.(p, A, 1)

AP) = Ay(P) + %E(P)p 04 (F) P5(cos 6)
3 op

J, 0 (0.2, tydr =(p, 2, 1)

- MLSM focuses on global characteristics

T 21t PR+ 2, B Y (0,0) —_
[ f f Rk - 2or” sin 0drdfdg = 0
=0 J¢=0 JR;,+)." ETY(6,0)



Discussion & Next Step?

- Clairaut coordinates (Rochester et al. ,2014): =458

. 2"d order (g2) terms effect ?

71,391l , 71
. truncated coupling chain: 1T+ S5,+ 715 +... ?

- Rotational modes of Jupiter, Saturn & exoplanet

Thanks!






Study of Free-core-nutation (FCN)

- FCN Is a normal mode of the earth as the rotating
axes of the FOC and of the mantle don’t coincident,

- FCN depends on the physics of the FOC, mantle & vant
. OC antle

core-mantle-boundary. It influences strongly the F

retro-annual nutation due to its resonance, so it is a

key parameter & interesting topic.

- The calculated period of FCN from traditional theory No fluid OC? = No FCN !
differs largely from the high-precision observation.

- We developed an integrated Galerkin method and

spectral element method that can study any Obs.(VLBI+S |430%1
antisymmetric earth without GSH. G)
- These methods are applied on the computation of |Theoretically |458-465
FCN period from PREM earth Calculated
(eg., extra flattening at CMB, magnetic/ |[This work 435
viscous/topographic couplings at CMB, etc.).

. Our result is 435 sid. day ! (Zhang & Huang, 2014a,b, c)



