Relativistic aspects of Gaia mission

S.A.Klioner

Lohrmann-Observatorium, Technische Universität Dresden Institute of Applied Astronomy, RAS

Journées 2014, Pulkovo Observatory, St.Petersburg, Russia, 22 September 2014

Gaia telescope

Astrometry, photometry of all 10⁹ sources up to 20 mag (+spectroscopy)

Gaia: payload ready for launch (2013)

Gaia launch: 19 December 2013

The first "historical" image from Gaia

Gaia not spinning, not focused

Image reconstruction C. Crowley (ESA Gaia-SOC)

"First light"

A random bright star, before focusing

Sadalmelik ("Luck of the king") = Alpha Aquarii

SpT = G2 lb

V = 2.94 mag

2.85 s integration time

First released PR image: a stellar cluster

First released PR image: a stellar cluster

Comparable telescopes (1.3 m): from the Earth and from space

Image courtesy Łukasz Wyrzykowski

A galaxy...

M84

again in 2.85 sec

ALL THESE IMAGES ARE TAKEN FOR TEST PURPOSES

Gaia does not take images in normal operations!

The first discovery: 12.09.2014 a supernova Gaia2014aaa

Increase of the flux from a galaxy: hand-picked from the standard science alert pipeline

Schedule

Gaia: goals

Major components of the model

- 1. IAU 2000 relativistic framework (Soffel et al. 2003) form the basis for the Gaia data processing
- 2. Relativistic model for astrometric observations (Klioner 2003, 2004)
 - Lorentz transformations for aberration
 - Deflection of light: monopole (post- und post-post-Newtonian), quadrupole, gravitomagnetic terms up to 17 bodies routinely, more if needed
 - BCRS definitions of parallax, proper motion, etc.
 - Relativistic definition of observables and the attitude
- 3. Relativistic model for the synchronization of Gaia atomic clock and TCB
 - GCRS, BCRS, Gaia proper time, relativistic propagation, ...

Consistency of all aspects of the mission should be monitored

Clock calibration: observational data (simplified)

High-accuracy clock model

Gaia clock behaviour

After taking the relativity into account:

we see the clock behaviour as expected from laboratory experiments

Each relativistic effect used in the models can be used to test GR

Gaia sensitivity to the gravitational light deflection due to the Sun

about 80 observations for each of 10⁹ sources...

Accuracy of the quadrupole deflection test as function of two free parameters of the Gaia scanning law

quadrupole S/N from observations points= 3240000 max= 9.918e+00 min= 5.154e-01 mean= 3.447e+00 median= 3.264e+00 st.dev= 1.341e+00

initial precession phase (deg)

Optimization does bring a major improvement

quadrupole s/n from observations points= 3240000 max= 9.918e+00 min= 5.154e-01 mean= 3.447e+00 median= 3.264e+00 st.dev= 1.341e+00

GR-relevant tests with Gaia: solar system and beyond

- 1. Monopole light deflection
- 2. Quadrupole light deflection (a few sigmas detection)
- 3. Local Lorentz Invariance a big (and expensive ⁽ⁱ⁾) "Michelson-Morley"
- 4. post-Newtonian equations of motion with asteroids
- 5. acceleration of the solar system
- 6. masses of black holes and neutron stars in binaries
- 7. ultra-low frequency gravitational waves: v < 6 nHz
- 8. gravitational waves from quasi-stationary sources (binary supermassive black holes): 6 nHz < v < 0.2 mHz

Backup slides

Gaia: hardware problems

Gradual throughput decrease

reason: unexpected water in the spacecraft which slowly evaporates and condenses as ice on the (cold) mirrors remedy: periodic (once per several months) heating of the payload consequences: about 1 month of additional dead time per year

• Excessive stray light in some parts of the focal plane

 reason: not fully understood; small manufacturing errors of the sunshield?, ...
remedy: none; might become better after decontamination consequences: lower accuracies for stars G>16

• Larger variations of the BA (basic angle) are measured by the BA monitor

reason: unknown remedy: BA monitor; studies ongoing consequences: hopefully none, but...

Gaia: expected astrometric accuracy

http://www.cosmos.esa.int/web/gaia/science-performance

End-of-mission parallax:

	B1V	G2V	M6V
V-I _C [mag]	-0.22	0.75	3.85
Bright stars	5-14 µas (<mark>3 mag</mark> < V < 12 mag)	5-14 µas (<mark>3 mag</mark> < V < 12 mag)	5-14 µas (<mark>5 mag</mark> < V < 14 mag)
V = 15 mag	26 µas	24 µas	9 µas
V = 20 mag	600 µas	540 µas	130 µas

Other parameters:

σ0	=	0.743 · σ _Π ;
σ _a *	=	0.787 · σ _Π ;
σδ	=	0.699 · σ _Π ;
σµ	=	0.526 · σ _Π ;
σ _{µa} *	=	0.556 · σ _Π ;
$\sigma_{\mu\delta}$	=	0.496 · σ _Π ,

The predicted errors vary over the sky...