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Motivation 

 Internal mass distribution related to principal 

moments of inertia (A<B<C). 

 Principal moments of inertia are also related to 

quadrupole gravity coefficients C20 and C22  and 

the libration amplitudes θ  

Where M is the mass of Phobos, r0 is the mean radius of Phobos  and e is the ellipticity of its orbit around Mars. 

•  Origin of Martian moons? 

•  We can get clues from geodetic parameters: bulk 

density; mass distribution; composition; dissipative 

properties… 
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Why are we interested in very precise 
Phobos mass? 

Geodetic parameters (C20, C22) of heterogeneous 

interior departs by a few percents (<10%) from the 

homogeneous interior (Rivoldini et al., 2011, 

Rosenblatt et al, 2013); 

 

C00 (GM) is correlated with C20 and C22; 

 

Thus, GM need to be known with precision ~0.1% 

(MEX simulations, Rosenblatt et al, 2013); 
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Phobos mass determination from 
different spacecraft/strategies 

Pätzold et al., 2014 
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Phobos mass determination from 

similar strategy: Viking 1 and MEX 

• Estimated parameters: 

• for both s/c: 

• ● initial state vector, 

• ● Phobos GM, 

• ● radiation pressure 
coefficients. 

• In case of MEX: 

• ●atmosph drag, 

• ●Doppler frequency 
offset, 

• ●range bias, 

• ●thruster parameters 

Close encounters only 
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Actual precision of Phobos mass 

determination 

• Aim: to quantify the impact of different error sources on the 
Phobos GM estimations from flyby data. 

 

• Considered error sources: 

– Phobos a priori ephemerides; 

– Phobos a priori GM value; 

– measurements noise; 

– different strategies; 

• Methods: 

– real data analysis; 

– simulations. 
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Real data: sensitivity of GM estimations 

to the errors in a priori Phobos 

ephemerides 

Lainey, 2007 (IMCCE), Jacobson, 2010 (JPL) 

 not sensitive 

 sensitive 
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Simulations: impact of errors in a priori 

Phobos ephemeris on the Phobos GM  

Simulations: IMCCE (Lainey, 2007) ephemeris + X-band/S-band noise level for 

MEX/Viking1; 

Reconstruction: a) IMCCE Phobos ephemeris -1 km (perturbed) and b) IMCCE 

ephemeris (unperturbed) + same noise level as for simulations in all cases. 
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Simulations: sensitivity of the 

measurements to the a priori GM value 

Simulations:  zero noise+ 

IMCCE a priori ephemerides 

+GMPH = 7.16 * 105 m3/sec2.  

 

Reconstruction: zero noise+ 

IMCCE a priori ephemerides + 

GM1
PH = 7.66 *105 and  

GM2PH= 8.16 *105 m3/sec2.  

 

Only initial state vector is 

estimated during simulated orbit 

reconstruction. 



Kudryashova et al., St Petersburg 23, September 2014 10 

Simulations: sensitivity of the 
measurements to the a priori GM value 
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Sensitivity of the measurements to the 

observational/modeling noise 

simulations and orbit 

reconstructions: IMCCE  

Phobos ephemeris. 

Viking1 data: noise level 0.06 

mm/sec and 1 mm/ sec  

 

decreasing the value of the 

noise diminish the GM formal 

errors and bringing the  

values of GM closer to one 

another 
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Sensitivity of the measurements to the 
observational/modeling noise 

MEX data with the noise 

levels 0.01 and 0.02 

mm/sec . 
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CONCLUSIONS 

Accuracy and precision of GM estimations increase with 
decreasing of the value of the noise for both spacecraft. 
 

VIKING1:  

•neither distances of flybys nor a priori ephemerides show 
clear correlation with the GMPH estimations and their formal 
errors; 
•the post-fit Doppler residuals are not very sensitive to the 
errors in GMPH: changes of the spacecraft velocities due to Δ 
GMPH =105 [m3/sec2] (14% a priori GMPH) are at the level of 
0.06 mm/sec which corresponds to the most optimistic 
estimation of the observational noise level in case of Viking 1; 
Observational noise dominates all other considered sources 
of errors 
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CONCLUSIONS 

MEX: 
● there is a clear dependence between Phobos GM 
estimations and a priori ephemerides used: the bigger the 
difference in a priori ephemerides (which reaches 0,5 km for 
the flyby of the year 2008) the bigger the difference in GM 
estimations. 
● Changes of  the spacecraft velocities due to  ΔGMph  =105 
[m3/sec2] (14% of Gmph) could be observed (>= noise level) 
from very distant flybys (at distance 467 km it produces vel 
changes 0.02 mm/sec) and ΔGMph  =5*104 (7% of GMph) 
can be observed starting from closer flybys (2010 at the 
distance about 78 km); 
The uncertainties in Phobos a priori position dominate other 
sources of errors. 
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Thank you! 
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