
usu-logo

Introduction Analytical approximation Numerical simulation Summary

Long time dynamical evolution of highly
elliptical satellites orbits

Eduard Kuznetsov Polina Zakharova

Astronomical Observatory
Ural Federal University

Journees 2014
22–24 September 2014, Saint-Petersburg



usu-logo

Introduction Analytical approximation Numerical simulation Summary

Outline

1 Introduction

2 Analytical approximation
Critical arguments and their frequencies
p:q resonances

3 Numerical simulation
Numerical model
Dynamical evolution in region near the high-order
resonance

4 Summary
Results



usu-logo

Introduction Analytical approximation Numerical simulation Summary

Astronomical Observatory
of the Ural Federal University

Orbital evolution of HEO objects is studied by
both a positional observation method (SBG telescope)
and theoretical methods (this work)

analytical
numerical
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Motivation

Long-term dynamical evolution near HEO

Safety of active satellites
Secular perturbations of semi-major axes

Atmospheric drag
The Poynting–Robertson effect

Long-term evolution of eccentricities and inclinations due
to the Lidov–Kozai resonance
Passage through high-order resonance zones
Formation of stochastic trajectories
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Methods

Analytical
Resonant semi-major axis values
Critical arguments

Numerical
Positions and sizes of high-order resonance zones
Estimation of semi-major axes secular perturbations
Estimation of integrated autocorrelation function
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Critical arguments and their frequencies

Critical arguments (Allan 1967)

Φ1 = p(M + Ω + g)− qωt = ν1t
Φ2 = p(M + g) + q(Ω− ωt) = ν2t
Φ3 = pM + q(g + Ω− ωt) = ν3t

Frequencies of the critical arguments

ν1 = p(nM + nΩ + ng)− qω
ν2 = p(nM + ng) + q(nΩ − ω)

ν3 = pnM + q(ng + nΩ − ω)

M, Ω, g are angular elements, nM , nΩ, ng are mean motions,
ω is the angular velocity of the Earth
p, q are integers
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p:q resonances

Types of resonances

n-resonance
ν1 ≈ 0

p:q resonance between the satellite’s mean motion nM
and the Earth’s angular velocity ω

i-resonance
ν2 ≈ 0

The position of the ascending node of the orbit
repeats periodically in a rotating coordinate system

e-resonance
ν3 ≈ 0

The position of the line of apsides of the orbit
repeats periodically in a rotating coordinate system
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p:q resonances

17 high-order resonance relations p:q

Resonant semi-major axis values
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a ,  k m
e = 0.65 and

i = 63.4◦

16 6 |p| 6 25
33 6 |q| 6 49

Order of resonance:
49 6 |p|+ |q| 6 74
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Numerical model

Numerical Model of Artificial Earth Satellites Motion
(Bordovitsyna et al. 2007)

Software developer
Research Institute of Applied Mathematics and Mechanics
of Tomsk State University

Integrator

Everhart’s method of the 19th order

Interval
24 years
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Numerical model

The model of perturbing forces
(Kuznetsov and Kudryavtsev 2009)

the Earth’s gravitational field (EGM96, harmonics up to the
27th order and degree inclusive)
the attraction of the Moon and the Sun
the tides in the Earth’s body
the direct radiation pressure, taking into account the
shadow of the Earth (the reflection coefficient k = 1.44)
the Poynting–Robertson effect
the atmospheric drag
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Numerical model

Initial conditions

High-elliptical orbits
a0 are consistent with resonant conditions arisen from the
analytical approximation
e0 = 0.65
Critical inclination i0 = 63.4◦

g0 = 270◦

Ω0 = 0◦, 90◦, 180◦, and 270◦

Ω0 coincide with initial values of solar angle
ϕ0 = Ω0 + g0 = 270◦, 0◦, 90◦, and 180◦

AMR = 0.02, 0.2, and 2 m2/kg
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Dynamical evolution in region near the high-order resonance

22:45 resonance region
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Dynamical evolution in region near the high-order resonance

Evolution of the semi-major axis a
near the 22:45 resonance region

a0 = 26162 km, ϕ0 = 0◦, AMR is 0.02 m2/kg
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Dynamical evolution in region near the high-order resonance

Evolution of the eccentricity e and argument of the
pericenter g near the 22:45 resonance region

a0 = 26162 km, AMR is 0.02 m2/kg
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Dynamical evolution in region near the high-order resonance

Evolution of the inclination i
near the 22:45 resonance region

a0 = 26162 km, AMR is 0.02 m2/kg
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Dynamical evolution in region near the high-order resonance

Evolution of the critical argument Φ1

near the 22:45 resonance region

a0 = 26162 km, ϕ0 = 90◦, AMR is 0.02 m2/kg
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Dynamical evolution in region near the high-order resonance

Evolution of the critical argument Φ2

near the 22:45 resonance region

a0 = 26162 km, ϕ0 = 0◦, AMR is 0.02 m2/kg
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Dynamical evolution in region near the high-order resonance

Evolution of the critical argument Φ3

near the 22:45 resonance region

a0 = 26162 km, ϕ0 = 0◦, AMR is 0.02 m2/kg
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Dynamical evolution in region near the high-order resonance

Evolution of the semi-major axis a
near the 22:45 resonance region

a0 = 26162 km, ϕ0 = 0◦, AMR is 2 m2/kg

0 4 8 1 2 1 6 2 0 2 4
2 6 0 4 0

2 6 1 0 0

2 6 1 6 0

2 6 2 2 0

 

t ,  y e a r s

a ,  k m



usu-logo

Introduction Analytical approximation Numerical simulation Summary

Dynamical evolution in region near the high-order resonance

Evolution of the critical argument Φ1

near the 22:45 resonance region

a0 = 26162 km, ϕ0 = 0◦, AMR is 2 m2/kg
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Results

Formation of the stochastic trajectories

The influences of the Poynting–Robertson effect

Secular decrease in the semi-major axis, which, for a
spherically symmetrical satellite with AMR = 2 m2/kg
near the 22:45 resonance region, equals approximately
0.5 km/year
The effect weakens slightly, in resonance regions
Objects pass through the regions of high-order resonances
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Results

The integrated autocorrelation function A

A → 1
constant time series

A → 0.5
time series representing a uniformly sampled sine wave

A tends to a finite value not far from 0.5
other periodic and quasi-periodic time series

A → 0 with a speed proportional to the inverse of the
exponential decay time

chaotic orbits
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Results

The integrated autocorrelation function A for the
semi-major axis a near the 22:45 resonance region

a0 = 26162 km, AMR is 0.02 m2/kg
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Results

Conclusion

The Poynting–Robertson effect
and secular perturbations of semi-major axis
lead to the formation of weak stochastic trajectories in
HEO region.
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Results

Thank you
for your attention!
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