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Introduction

« Satellite mission Gravity Recovery and Climate

Experiment (GRACE) is a source of data on temporal
changes in Earth's gravity field. These data are available,
in the form of changes in the coetficients AC_,, AS,, - the
so-called Level 2 gravity field product.

These coefficients reflect mainly the impact of the land
mass of the hydrosphere on the gravitational field
changes.

To a lesser extent, they reflect changes in ice mass, and
changes from seismic events. However they do not
include information about the influence of the atmosphere
and ocean.



Introduction

There have been a number of attempts to process releases
of Gravity Recovery and Climate Experiment (GRACE)
data.

Here we use the most recently updated solutions of the
GRACE based AC,; AS,, .

AC,; AS,; coetticients can be also determined from SLR
data analysis.

Recently AC,; AS,; were redetermined from analysis of
observations of CHAMP satellite mission .



Introduction - Excitation functions of polar motion

X1, X2 - components (towards longitudes 0° and 90°E
respectively) of gravimetric~hydrological excitation functions

are determined from AC,,;, AS,; coefficients from the following
formulas (Gross, 2013):

/5 1.098a:M , < /5 1.098a2M | -
=—.|= AC =—,|= E__AS
A1 3 (C—A) 21 X2 3 (C—A) 21

M-mass of the Earth

ag-average equatorial radius of the Earth
C,A principal moments of inertia



Data used - AC,,, AS,,

The following data set were used to estimate the gravimetric excitation
functions of polar motion:

GRACE monthly solutions:

*AIUB - solution from the Astronomical Institute University of Bern data
from July 2003 and December 2009,

ITG - solution from Institut fir Geodasie und Geoinformation Bonn, data
from August 2002 to August 2009,

*Tongji - monthly solution from the Tongji University, ~Shanghai, PR
China, from January 2003 to December 2010,

‘DMT-1 - solution from the Delft Institute of =~ Earth Observation and
Space System of the Delft University of Technology, data from February
2003 to February 2009.

CSR RLO5 - RLO5 solution from the Center for Space Research  (CSR),
2003 - 2013.

JPL RLO5 - RLO5 solution from the Jet Propulsion Laboratory (JPL),
2003-2013.

*GFZ RLO05 - RLO5 solution from the GeoforschungsZentrum (GFZ) , 2003-
2013.

available on the website: http://icgem.gfz-potsdam.de/ICGEM/.




Data used - AC,;, AS,,

GRACE 10 day solution:
*CNES/GRGS RL02 solution is determined by a combined analysis of the
LAGEOS and GRACE observations, January 2003 — December

2012.

GRACE weekly solution

*GFZ RL05- is a GRACE weekly solution from the GeoforschungsZentrum
(GFZ)

CHAMP monthly solution

*ULUX - is a monthly solutions from the CHAMP mission observations
the University of Luxembourg, January 2003 — December
2009.

*All these data are available on the website: http://icgem.gfz-
potsdam.de/ICGEM/.

SLR monthly solution

*SLR obtained from the analysis of SLR data to five geodetic satellites:
LAGEQOS-1 and 2, Starlette, Stella and  Ajisai
(Cheng and al., 2012).
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Data - Excitation Functions of Polar Motion

* In this way we determined 11 series of y; %, component of
gravimetric~hydrological excitation functions of polar
motion from the above series of AC,,, AS,,

* Next these gravimetric excitation functions of polar
motion were compared with so called geodetic residuals
(G-A-O) containing the hydrological part of polar motion
excitation obtained by removing merged atmospheric
(AAM) and oceanic (OAM) excitation from the geodetic
excitation function (GAM).

* We used the geodetic residuals available on the website
IERS—EOP Product Center http:/hpiers.obspm.fr/eop-pc/



Data - Excitation Functions of Polar Motion

The gravimetric data were given with monthly, weekly
and 10 days sampling

The geodetic residuals were given with 6-hour sampling.

All series were smoothed and interpolated with the 30
days or 10 days step in order to harmonize data.

The seasonal 365.25, 180.0 and 120.0-day oscillations and
trend were removed from the time series.

The main purpose was to explore which from these
several gravimetric excitation functions are closed to the
geodetic observations.



Analysis Non-Seasonal Variations

Time series
Spectra
Variances

Correlation coefficients



Excitation Functions of Polar Motion
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Fig. 1 Comparison of components of the gravime}tlric excitation functions, x; and x,, of polar motion from
different gravimetric data and of the geodetic residuals G-A-O being the difference between the geodetic
excitation function and sum of the atmospheric and oceanic excitation function of polar motion. All the data
were smoothed with a step of 30 days, FWHM=60. The 365.25, 180.0 and 120.0-day oscillations were removed
from the time series.
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Fig. 1 Comparison of components of the gravimetric excitation functions, x; and x,, of polar motion from
different gravimetric data and of the geodetic residuals G-A-O being the difference between the geodetic
excitation function and sum of the atmospheric and oceanic excitation function of polar motion. All the data
were smoothed with a step of 30 days, FWHM=60. The 365.25, 180.0 and 120.0-day oscillations were removed

from the time series.



Excitation Functions of Polar Motion
10 days
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Fig. 2 Comparison of components of the gravimetric excitation functions, x; and x,, of polar motion from
different gravimetric data and of the geodetic residuals G-A-O being the difference between the geodetic
excitation function and sum of the atmospheric and oceanic excitation. All the data were smoothed with a
step of 10 days, FWHM=20. The 365.25, 180.0 and 120.0-day oscillations were removed from the time series.
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Fig. 3 FTBPF amplitude spectra of the different complex gravimetric excitation functions of polar motion

and of geodetic residuals (G-A-O) (functions smoothed with a step of 30 days).



Spectra
G-A-O vs Gravimetric Excitations (10 days)
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Fig. 4 FTBPF amplitude spectra of the different complex gravimetric excitation functions of polar motion
and of geodetic residuals (G-A-O) (functions smoothed with a step of 10 days).



Variances Comparison
G-A-O vs Gravimetric Excitations (30 days)

Excitation functions

G-A-O 28.3 57.1
DMT 11.9 9.1
ITG 95.8 104.0
AIUB 179.7 221.7
Tongji 299 51.3
GRACE CSR 33.0 60.8
GRACE GFZ 6.9 4.6
GRACE JPL 166.3 211.1
SLR 65.8 145.5

ULUX-Champ 28.1 11.3



Variances Comparison
G-A-O vs Gravimetric Excitations (10 days)

Excitation functions

G-A-O 28.3 56.6

GFZ 8.5 6.4
CNES 121.6 119.1



Correlation Coefficients
G-A-O vs Gravimetric Excitations

Gravimetric excitation

30 day sampling
DMT 0.02 0.26
ITG 0.24 0.14
AIUB 0.18 0.15
Tongji 0.35 0.60
CSR RLO5 0.24 0.69
GFZ RL05 0.30 0.37
JPL RLO5 0.25 0.29
SLR 0.10 0.46
ULUX -Champ 0.33 0.01
10 day sampling
CNES 0.30 0.52

GFZ 0.24 0.26
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Annual Oscillations

* Phasor diagrams



Phasor diagrams, annual osciallations
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Fig. 3 Phasor diagrams of the prograde and retrograde annaul oscillations of the residuals of the geodetic

excitation function (G-A-O) and of the different gravimetric excitation functions. Analysis is done over the
period 2003.0 to 2009.5.



Conclusions

We found that gravimetric-hydrological excitation functions, based on
the most recent releases, obtained by the several processing centers
still differ significantly.

One difference is that a greater degree of smoothness is exhibited by
GFZ based functions than the other products.

The best agreement between gravimetric-hydrological excitation
functions and geodetic residuals was obtained for the x, component of
gravimetric excitation function computed from the CSR, Tongji and
CNES data series, and this may be due to some positive attributes in
the processing.

There is some agreement between annual oscillation of G-A-O and of
gravimetric excitation based on ITG, GFZ data in the prograde
component and between annual oscillation of G-A-O and of
gravimetric excitation based on CSR, Tongji, GFZ data in the
retrograde component.



Conclusions

* Analyses show that the use of these new data to compare with
geodetic residuals does not bring significant new results from to
previous studies [Seoane et al. 2009, 2011; Jin et al. 2010,2011, 2012; Chen
et al. 2012; Nastula et al. 2011], though confirms the current extent of the
differences among the series.



Amplitudes and phases of annual oscillation
gravimetric excitations and geodetic residuals

Prograde annual Retrograde annual
Amplitudes Phase Ampli Phase
[mas] [0] tudes [0]
[mas]
G-A-O 6.37 -53.5 3.48 120.8
TONG]I 1.78 11.7 3.98 139.6
ITG 4.16 -60.2 8.50 -100.9
DMT 0.44 -3.6 2.93 72.0
AIUB 10.93 -76.6 4.35 -61.3
GRACE CSR RL05 2.75 -2.0 3.06 138.7
GRACE GFZ RL05 3.65 -14.3 4.50 130.2
GRACE JPL RL05 4.55 -5.8 5.86 11.2
ULUX 14.49 -53.9 14.91 128.9
SLR 15.00 -89.3 18.35 -118.7
GFZ WEEKLY 3.67 -27.5 4.82 137.7
CNES10 2.59 -170.9 3.25 -74.5
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Fig. 1 Comparison of components of the gravime}t,ric excitation functions, x; and x,, of polar motion from
different gravimetric data and of the geodetic residuals G-A-O being the difference between the geodetic
excitation function and sum of the atmospheric and oceanic excitation function of polar motion. All the data
were smoothed with a step of 30 days, FWHM=60. The 365.25, 180.0 and 120.0-day oscillations were removed
from the time series.
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Fig. 1 Comparison of components of the gravime}t,ric excitation functions, x; and x,, of polar motion from
different gravimetric data and of the geodetic residuals G-A-O being the difference between the geodetic
excitation function and sum of the atmospheric and oceanic excitation function of polar motion. All the data
were smoothed with a step of 30 days, FWHM=60. The 365.25, 180.0 and 120.0-day oscillations were removed
from the time series.
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Fig. 1 Comparison of components of the gravime}t,ric excitation functions, x; and x,, of polar motion from
different gravimetric data and of the geodetic residuals G-A-O being the difference between the geodetic
excitation function and sum of the atmospheric and oceanic excitation function of polar motion. All the data
were smoothed with a step of 30 days, FWHM=60. The 365.25, 180.0 and 120.0-day oscillations were removed
from the time series.
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Fig. 1 Comparison of components of the gravime}t,ric excitation functions, x; and x,, of polar motion from
different gravimetric data and of the geodetic residuals G-A-O being the difference between the geodetic
excitation function and sum of the atmospheric and oceanic excitation function of polar motion. All the data
were smoothed with a step of 30 days, FWHM=60. The 365.25, 180.0 and 120.0-day oscillations were removed
from the time series.
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Fig. 1 Comparison of components of the gravime}t,ric excitation functions, x; and x,, of polar motion from
different gravimetric data and of the geodetic residuals G-A-O being the difference between the geodetic
excitation function and sum of the atmospheric and oceanic excitation function of polar motion. All the data
were smoothed with a step of 30 days, FWHM=60. The 365.25, 180.0 and 120.0-day oscillations were removed
from the time series.
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Fig. 1 Comparison of components of the gravimetric excitation functions, x; and x,, of polar motion from
different gravimetric data and of the geodetic residuals G-A-O being the difference between the geodetic
excitation function and sum of the atmospheric and oceanic excitation function of polar motion. All the data
were smoothed with a step of 30 days, FWHM=60. The 365.25, 180.0 and 120.0-day oscillations were removed

from the time series.
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Fig. 1 Comparison of components of the gravimetric excitation functions, x; and x,, of polar motion from
different gravimetric data and of the geodetic residuals G-A-O being the difference between the geodetic
excitation function and sum of the atmospheric and oceanic excitation function of polar motion. All the data
were smoothed with a step of 30 days, FWHM=60. The 365.25, 180.0 and 120.0-day oscillations were removed
from the time series.
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Fig. 1 Comparison of components of the gravimetric excitation functions, x; and x,, of polar motion from
different gravimetric data and of the geodetic residuals G-A-O being the difference between the geodetic
excitation function and sum of the atmospheric and oceanic excitation function of polar motion. All the data
were smoothed with a step of 30 days, FWHM=60. The 365.25, 180.0 and 120.0-day oscillations were removed

from the time series.
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Spectra
G-A-0O vs Gravimetric Excitations
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Fig. 4 FTBPF amplitude spectra of the different complex gravimetric excitation functions of polar motion
and of geodetic residuals (G-A-O) (functions smoothed with a step of 30 days).
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Fig. 4 FTBPF amplitude spectra of the different complex gravimetric excitation functions of polar motion
and of geodetic residuals (G-A-O) (functions smoothed with a step of 30 days).
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Fig. 4 FTBPF amplitude spectra of the different complex gravimetric excitation functions of polar motion
and of geodetic residuals (G-A-O) (functions smoothed with a step of 30 days).
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Fig. 4 FTBPF amplitude spectra of the different complex gravimetric excitation functions of polar motion
and of geodetic residuals (G-A-O) (functions smoothed with a step of 30 days).



Spectra
G-A-0O vs Gravimetric Excitations

= TONGji
===ULUX
CSR RLOS
6 GFZ RLOS ||
= JPL RLO5
== =G-A-O

mas

Y ’ v/ ¢
gy V\.
k‘ ¢\"l A -ntes
-

IS

e \
-4%0 -300 -200 -100 0 100 200

Period (days)

Fig. 4 FTBPF amplitude spectra of the different complex gravimetric excitation functions of polar motion
and of geodetic residuals (G-A-O) (functions smoothed with a step of 30 days).
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Fig. 4 FTBPF amplitude spectra of the different complex gravimetric excitation functions of polar motion
and of geodetic residuals (G-A-O) (functions smoothed with a step of 30 days).
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Fig. 4 FTBPF amplitude spectra of the different complex gravimetric excitation functions of polar motion
and of geodetic residuals (G-A-O) (functions smoothed with a step of 30 days).
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Fig. 4 FTBPF amplitude spectra of the different complex gravimetric excitation functions of polar motion
and of geodetic residuals (G-A-O) (functions smoothed with a step of 30 days).



tations

ic Exci

tr

Spectra

G-A-0O vs Gravime

*
~
id AL T
P
« llllh.-ll.lllll
~ 4 -
"

400

300

L]
N
n
n
[
[
200

=== DMT
=== |TG
=== AlUB
=== CNES
— Tongji
=== ULUX

CSR RLO5
—— GFZ RLO5
—— JPL RLO5
-==GA-O

|
0

-100

-200

-300

sewn

Period (days)

Fig. 4 FTBPF amplitude spectra of the different complex gravimetric excitation functions of polar motion
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Phasor diagrams, annual oscillations
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Fig. 3 Phasor diagrams of the prograde and retrograde annaul oscillations of the residuals of the geodetic
excitation function (G-A-O) and of the different gravimetric excitation functions. Analysis is done over the

period 2003.0 to 2009.5.



Conclusions

* The fluids around the Earth, atmosphere, ocean, land-
based hydrosphere, change their distribution and hence
their angular momentum.

* Angular momentum exchanges with the solid Earth lead
to small but measurable changes in our planet’s rotation.
They cause changes in the speed of rotation (reckoned in
changes in Length-of-day) and the wobble of the Earth,
known as polar motion.

* The gravity field from satellite-based measurements can
help us quantify such changes in mass, needed especially
for the hydrosphere, since atmosphere and ocean
distributions are reasonably well-known through
observations and models.



