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INTRODUCTION. The probabilistic approach to the description of the Chandler wobble (CW) was proposed by Arato, Kolmogorov and Sinai in [Arato et al., 1962]. They assumed that the moment

of the forces causing the CW is a stationary random process with correlation time which is small in comparison with length of the row of observations. Then, the CW itself can be regarded as a

diffusion Markovian process with discrete time; wherein the sampling step must satisfy the condition:

There was shown in [Tsurkis et al. 2009], that the probabilistic model does not contradict with observations. Besides, evaluations for and the diffusion coefficient were obtained:

An equally important task is the studying of processes causing CW. Polar motion is due to several reasons, the main of which, apparently, is the impact of ocean and atmosphere to the solid Earth

[Gross et al, 2003], [Barnes et al., 1983]. The article [Tsurkis et al., 2012b] is devoted to analysis of the data on ocean angular momentum. This report is based on the results obtained there.
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1. Data 

The series of the ocean excitation functions of the International Earth Rotation and Reference System

Service for 1982-2003 (IERS, http://www.iers.org) are analyzed. These data refer to a right rectangular coordinate system,

where axes and are lying in the equatorial plane, and is directed along projection of the Greenwich Meridian to this

plane. Components and of the torque exerted by the ocean, are

where is the average frequency of the Earth’s rotation; is the equatorial moment of inertia of

the Earth; is the frequency of free nutation (Chandler frequency). The procedure for calculating the

excitation functions and is described in [Gross et al, 2003].

2. Statement of the Problem

The CW is described by the linearized Liouville equation expressing the law of angular momentum conservation [Munk,

MacDonald, 1964].

here , are dimensionless coordinates of the pole; Q is mantle quality factor (at frequencies of the order of );

Within the framework of the probabilistic approach are random functions of time. The pair will be

referred to as a random load. If nothing but the ocean impacts the pole motion, then

where are the ocean excitation functions. Obviously, the right-hand side of (2) contains law-frequency, year and half-year

modes. However, we will mean below as random parts of functions (3), so The hypothesis to be checked is

as follows: the load is a normal stationary stochastic process with small time of correlation. A mathematical model

of such process is a two-dimensional white noise: we assume that

where are components of a non-negative symmetric matrix, which we call the diffusion matrix and denote by

The aim of this work is to test the statistical hypothesis (4). Along the way, we shall evaluate the correlation time and

parameters characterizing the matrix namely the diffusion coefficient

and anisotropy constant

here and eigenvalues ​​of the matrix We disclaim the assumption that the ocean load is isotropic, i.e. that

3. Course of the solution. Main results

Let us consider the equation (2) without dissipation (i.e. in case ). It can be written in the form:

where If then

In terms of the excitation functions,

where see Fig. 1.
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Fig.1. The function calculated by formula (7) for 1000

days. The moment corresponds to 1.01.1980 г.
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Fig.2. Ocean component of CW for 1000 days (from

01.01.1980)

If the hypothesis (4) is true, then the function is a realization of a Markovian process in virtue of Doob's theorem (see, for

example, [Tikhonov et al., 1977]). Next, we must eliminate the deterministic part of function (7) consisting of low-frequency

component, the mode with a period of 1 year and its first overtone. This is the problem of independent interest; a variant of

spectral analysis proposed in [Tsurkis et al., 2012a] allows one to do it correctly. Below, we denote as x(t) the random part of

the function (7), see. Fig. 2; it will be referred to as the ocean component of CW.

Let us consider the function             

which is the solution of the differential equation

If conditions (4) are satisfied, is a Markovian process too. It turns out that the elements of the matrix can be estimated by

formulas

where is Wiener-Liouville scalar product, which was taken into account in [Tsurkis et al., 2012a]:

here is length of the series of observations. If the main hypothesis (4) is true, the estimates (9) are consistent and

nonshifted; proof of this fact uses statistical independence of increments which presents the

sequence of absence of dissipative term in the left-hand side of (8). Starting with some value of the sampling parameter

estimations (9) should not depend on      And, indeed, functions             and               increase with                 ;  then,   if  

they range near the values:

Fig. 3а, b. For the function            the "threshold" value  is                     this function decreases from 0 to  
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In the interval  0…50 days; if                   it remains close to value

and also performs oscillations whose amplitude increases with increasing of sampling parameter, Fig. 3c. So, results

presented in Figure 3 are consistent with the basic hypothesis; for the correlation time we find:
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Fig 3. а).

Fig 3. b). Fig 3. c).

The plan invented gives the following result: parameters and belong to intervals:

with probability The confidential interval for the anisotropy constant lies entirely in the positive area; therefore we

must consider the ocean load acting to the solid Earth as anisotropic.

4. The contribution of the ocean to the CW excitation

The diffusion coefficient is the main characteristic of the random load. Indeed, if and

then regardless of the relationship between the eigenvalues ​​of the matrix the sequence can be interpreted as

a discrete-time process with isotropic diffusion matrix, the trace of which equals to [Tsurkis et al., 2014]. But in the case of an

isotropic load the CW amplitude is also a Markovian process. If this process can be characterized

by stationary amplitude, i.e. the expectation which is proportional [Tsurkis et al., 2011].

Therefore, the ocean share of CW can be estimated by value where is "general" diffusion coefficient

characterizing the pole motion as a whole. Comparing (1) and (12), we see that This means that in absence of other

sources of excitation, the average amplitude of CW would be approximately one-third of the real one. On the other hand, if we

subtract the ocean torque from general angular moment acting on CW, the expectation of CW amplitude decreases slightly, by

approximately 5%. It is explained by non-linear dependence of average amplitude from

5. Conclusions

It is shown that the data on the torque exerted by the ocean on the solid Earth do not contradict the statistical hypothesis.

Namely,   it  can be  interpreted as an  anisotropic   stationary  random process  with a time of  autocorrelation           In 

context of the probabilistic approach, an estimate of the contribution of the ocean to the CW was obtained: the one-third part of 

the CW amplitude can be explained by ocean. 
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The coefficient of diffusion and the anisotropy

constant one can roughly estimate, using (10), (11) and

formulas (5) and (6):

To find confidence intervals for and we must use the fact

that estimations (9) for are normally distributed values

(it is the sequence of (4)). We have to find a statistical

relationship between these estimates, to build a three-

dimensional "confidence region“ for matrix

and probability P; and then to find the marginal values ​​of

functions and on the set using (5) and (6):

marginal values will be the required boundaries of the

confidence intervals. Thus, we must consider the matrix on

the whole as three-dimensional object.
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