



# Planned LLR station in Russia and its impact on the Lunar Ephemeris Accuracy

M.V. Vasilyev(1), E.I. Yagudina (1), Jean-Marie Torre(2), Dominique Feraudy (2)

- (1) Institute of Applied Astronomy, Saint-Petersburg, Russia
- (2) Universite de Nice Sophia-Antipolis CNRS UMR 7329 OCA Geoazur Caussols, France.



### **INTRODUCTION**



• Precise modern Lunar Ephemerides (DE/LE, INPOP, EPM-ERA) are based on only LLR observations obtained at several LLR ground stations during 1969 – 2013 years:

| LLR station | Time interval                | Obs.number |  |  |
|-------------|------------------------------|------------|--|--|
| McDonald    | 1970 March-1985 June         | 3440       |  |  |
| MLRS1       | 1985 Jan-1988 January        | 275        |  |  |
| MLRS2       | 1988 August-2012 April       | 3114       |  |  |
| HALEAKALA   | 1988 August-1990 August      | 694        |  |  |
| CERGA       | 1985 Jan-2013 February       | 9599       |  |  |
| APACHE      | <b>2006 July-2012 August</b> | 1576       |  |  |
| Total       | 1970 March-2013 February     | 18700      |  |  |

• There are two projects of new LLR stations:

Altay(Russia) and La Silla(Europe) stations.

Expected impact of new Russian LLR station on the Lunar ephemeris accuracy is the main topic of the presentation.



# **Altay LLR station**



- 1. Location: Siberia, Altay Optical-Laser Center, approximate coordinates are (51°N, 82°E, 385 m).
- 2. 3.12 meter telescope (Altay Optical-Laser Center) as probable base telescope for the LLR station
- 3. Target accuracy of LLR observations (normal point) is about 3mm
- 4. Meteorological conditions: 1400 clear night hours, 240 nights suitable for LLR observation per year
- 5. Major project participants: OJC «Research-and-Production Corporation «Precision Systems and Instruments», VNIIFTRI and IAA RAS



### Motivation and methods are presented below:

- To check the urgency of the project it should be shown in particular that the accuracy of the lunar ephemeris will visibly increase
- The only way to prove that fact now is the numerical simulation



### **Numerical simulation**



- 1. Distribution of real LLR observations (18700) at interval 1970-2013 have been analyzed depending on LLR station:
- Target reflectors distribution
- Elevation distribution
- Observations per day distribution
- Etc



- 2. Due to complexity and irregularity of the distributions above it was decided that observation programs of real LLR stations will be used for numerical simulations
- 3. Observation programs of Apache and Cerga stations have been chosen as the basis to create simulated LLR measurements
- 4. Special SW was developed for simulation:
- LLR observations simulation for Altay station
- Adjusted parameters estimation using both real and simulated LLR measurements



# **Numerical simulation: scenarios**



I.1.18700 real observations (1970-2013 years) + simulated observations from 2006 till 2013 at Altay station like it was observed at Apache (Apollo) or Cerga station. (in simulation-"Apache 2006", "Cerga 2006").

I.2. 18700 real observations (1970-2013 years) + simulated observations from 2006 (-1 month shift) till 2013 at Altay station like it was observed at Apache (Apollo) or Cerga station. (in simulation-"Apache 2006shift", "Cerga 2006shift").

II. 18700 real observations (1970-2013 years) + simulated observations from 2008 till 2013 at Altay station like it was observed at Apache (Apollo) or Cerga station. (in simulation-"Apache 2008", "Cerga 2008").

III. 18700 real observations (1970-2013 years) + simulated observations from 2012 till 2013 at Altay station like it was observed at Apache (Apollo) or Cerga station. (in simulation-"Apache 2012", "Cerga2012").



### **Simulation results**



### Impact on parameter's accuracy: "Apache 2006" and "Cerga2006" scenarios



| N  | Parameter           | N  | Parameter | N  | Parameter   | N  | Parameter       | N  | Parameter   |
|----|---------------------|----|-----------|----|-------------|----|-----------------|----|-------------|
| 1  | X Moon              | 15 | A11 PY    | 29 | CERGA PX    | 42 | $C_{20}$        | 55 | T*sidt Moon |
| 2  | Y Moon              | 16 | A14 long  | 30 | CERGA long  | 43 | $C_{21}^{20}$   | 56 | T*deps      |
| 3  | Z Moon              | 17 | A14 PX    | 31 | CERGA PY    | 44 | $S_{21}$        | 57 | T*dpsi      |
| 4  | V <sub>x</sub> Moon | 18 | A14 PY    | 32 | Halaek PX   | 45 | $C_{22}$        | 58 | deps        |
| 5  | $V_y$ Moon          | 19 | L2 long   | 33 | Halaek long | 46 | $S_{22}$        | 59 | dpsi        |
| 6  | $V_z$ Moon          | 20 | L2 PX     | 34 | Halaek PY   | 47 | $C_{30}^{22}$   | 60 | Lag Moon    |
| 7  | Libration ⊖         | 21 | L2 PY     | 35 | MLRS1 PX    | 48 | C <sub>31</sub> | 61 | k2 Moon     |
| 8  | Libration $\phi$    | 22 | A15 PX    | 36 | MLRS1 long  | 49 | $S_{31}$        | 62 | A15 long    |
| 9  | Libration ψ         | 23 | MCD PX    | 37 | MLRS1 PY    | 50 | $C_{32}$        | 63 | A15 PX      |
| 10 | Libration d⊖/dt     | 24 | MCD long  | 38 | Apache px   | 51 | $S_{32}$        | 64 | A15 Py      |
| 11 | Libration dφ/dt     | 25 | MCD PY    | 39 | Apache long | 52 | $C_{33}$        | 65 | L1 long     |
| 12 | Libration dψ/dt     | 26 | MLRS PX   | 40 | Apache py   | 53 | $S_{33}$        | 66 | L1 PX       |
| 13 | A11 long            | 27 | MLRS long | 41 | Lag Earth   | 54 | T*sidt          | 67 | L1 PY       |
| 14 | A11 PX              | 28 | MLRS PY   |    |             |    |                 |    |             |

22-24 September 2014, Journees 2014, Planned LLR station in Russia and its impact on the Lunar Ephemeris Accuracy © Yagudina et all.



# Impact on the Lunar ephemeris accuracy







Adjusted parameters: initial Lunar state vector and libration angles



# **Accuracy vs observation interval**













### La Silla LLR station



- 1. SHELLI (Southern Hemisphere Lunar Laser Instrument) project, location: ESO, La Silla, Chile (29°S, 70°W, 2400m)
- 2. NTT telescope (3.6 meter) as proposed base telescope for the LLR station
- 3. As a twin of Apache Point in terms of quality and regularity of the produced data
- 4. Meteorological conditions: ESO, bordering the southern extremity of the Atacama desert in Chile
- 5. Probable project participants: ESO, Geoazur (OCA), INSU







# Altay vs La Silla station



### Altay station: "Apache 2006" and "Cerga2006" scenarios



La Silla station: "Apache 2006" and "Cerga2006" scenarios





# Altay vs La Silla station



### Altay station: "Apache 2006" and "Cerga2006" scenarios



### La Silla station: "Apache 2006" and "Cerga2006" scenarios





# Observation conditions: latitude dependence



# Elevation of the Moon: Apache, Cerga, Altay





# LLR observations: geography











- According our simulations new Russian LLR observations will provide visible accuracy improvement of the Lunar ephemeris and corresponding physical models: about 2-16% depending on the adjusted parameter.
- Simulation SW was developed estimating the impact of new LLR stations on the accuracy of Lunar ephemeris.
- Russian LLR station (Altay) has observational limitation due to geographical position. So, its observation program should be very intensive to provide the impact comparable with other modern LLR stations.
- The received result are in good agreement with analogous works (for example, the paper French colleagues about proposal of installation LLR device at 3.6 m telescope in Southern Hemisphere, La Silla).
- Russian LLR station can give contribution into the common world database of LLR observations.





# Thank you for attention