
О СОГЛАСОВАННОСТИ СКОРОСТЕЙ СТАНЦИЙ С НЕСКОЛЬКИМИ ГНСС-ПРИЁМНИКАМИ

В. Горшков, Н. Щербакова ГАО РАН, vigor@gao.spb.ru

Всероссийская астрометрическая конференция «Пулково-2015»

Мотивация

2008.2 – 2011.6

2011.7 - 2015

1996.9 – 2011.7

2011.8 - 2015

Цель работы

Определение статистически значимых различий в скоростях близко расположенных станций для оценки верхнего предела ошибки скорости на произвольно выбранной ГНСС-станции.

Попытка определить основные причины этих различий.

Знание максимальной ошибки особенно существенно при региональных геодинамических исследованиях (поиск внутриплитовых структур, определение разломных зон)

Данные - I

Скорости 21 станции, компактно расположенные в 9 пунктах

Обработаны исходные данные (RINEX) с помощью пакета GYPSI 6.3

(стратегия PPP, стандартные поправки, включая атмосферные нагрузки, учёт скачков с привязкой к log-файлам и статистических выбросов).

Данные - II (данные Иркутска, Менделеево и Обнинска присутствуют также в ДАННЫХ -I).

AB01	AB02	AB04	AB06	AB07	AB08	AB09	AB13	AB14	AB15	AB17	AB18	AB21	AB22	AB25	AB27	AB28
AB33	AB35	AB36	AB37	AB39	AB41	AB42	AB43	AB44	AB45	AB46	AB48	AB49	AB50	AB51	ABEB	ABMF

102 пары рядов из базы JPL, http://sideshow.jpl.nasa.gov/post/series.html (Orbits: S. Desai, W. Bertiger, J. Gross, B. Haines, N. Harvey, C. Selle, A. Sibthorpe, J. Weiss Point positioning: A. Moore, S. Owen; Post-processing and Web design: M. Heflin),

где приведены скорости около 2.5 тысяч ГНСС-станций. Скорости станций определялись после учёта скачков в рядах положений по χ^2 — статистике и не привязаны к информации из log-файлов.

Имеющиеся неточности скоростей иногда можно откорректировать поскольку ряды положений и скачков в них также представлены в этой базе.

Общая характеристика данных

- Использовались ряды продолжительностью более 3 лет и базы менее 1 км.
- Данные о смене приёмников, их прошивок, смене антенн и их перемещений взяты из log-файлов (ftp://garner.ucsd.edu/pub/docs/station-logs/).
- Использовались разные марки приёмников и антенн. На некоторых станциях количество изменений в составе приёмник + антенна доходило до 20.
- Антенны установлены на крышах, мачтах и наземных геодезических столбах.

Сравнение скоростей

По имеющейся оценке $\sigma_{\Delta V}=\sqrt{\sigma_1^2+\sigma_2^2}$ проверялась нулевая гипотеза $\Delta V=|V_1-V_2|=0$ на 99% уровне значимости: если $\Delta V>u_{0.99}\sigma_{\Delta V}$, то нулевая гипотеза отвергалась $(u_{0.99}=2.576)$. Здесь $V_1,V_2,\sigma_1,\sigma_2$ – скорости и их ошибки для сравниваемых рядов.

Ошибки σ_1, σ_2 вычислены с учётом типа распределения. Для фликкер-шума (основное распределение в ГНСС-рядах): $\sigma_i \cong 0.75 A_i \ / \ T_i, \ A_i -$ вариация Аллана, $T_i -$ продолжительность наблюдения ряда.

Сравнение скоростей по данным из базы JPL

Всего из 102 пар рядов 39 оказалось со скоростями, значимо различающимися хотя бы в одной компоненте.

Наблюдения разбиты на группы:

1. пересекающихся по времени (не менее 3 лет одновременных наблюдений) с несколькими приборами (24 пары из 56, => 43%)

 $\Delta V_N = 0.76 \pm .24$ $\Delta V_F = 0.98 \pm .29$ $\Delta V_H = 3.05 \pm .75$ (мм/год)

2. последовательно сменяющих друг друга (11 из 20, => 55%)

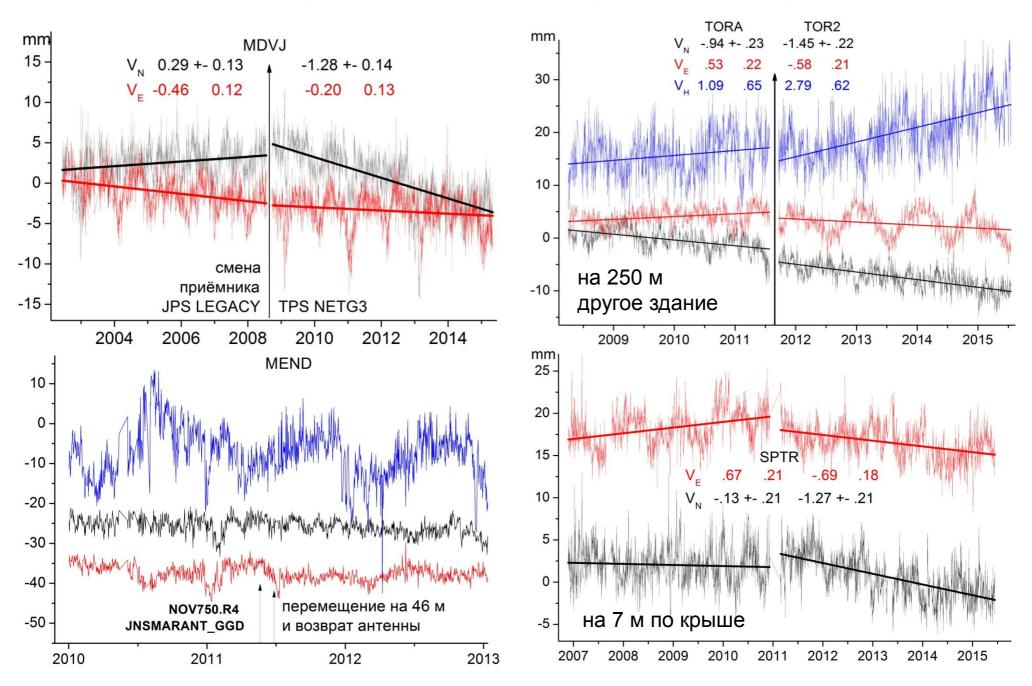
 $\Delta V_N = 2.13 \pm .49$ $\Delta V_F = 1.48 \pm .39$ $\Delta V_H = 4.08 \pm 1.14$ (мм/год)

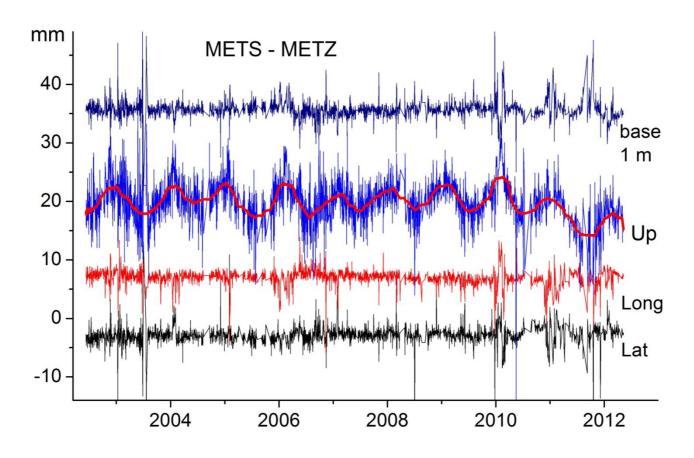
3. наблюдения на одну антенну с соединёнными через разделитель (4 из 26, => 15%)приёмниками

 $\Delta V_N = 0.52 \pm .12$ $\Delta V_F = 0.82 \pm .17$

 $\Delta V_{H} = 1.01 \pm .35$ (мм/год)

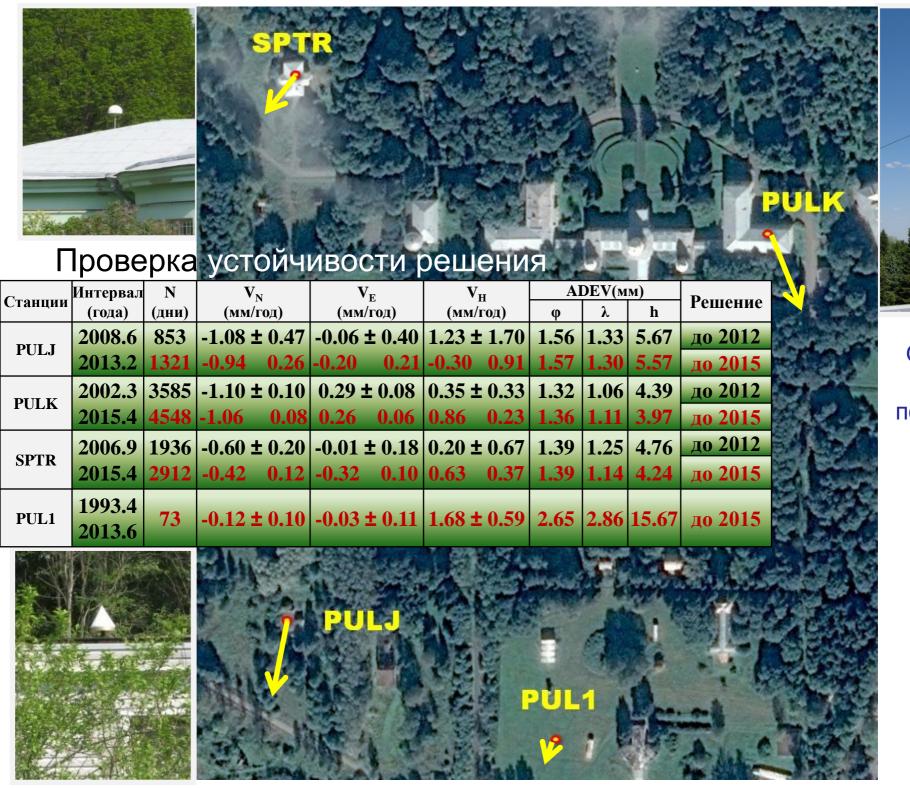
 $\Delta V_N = 0.7 \pm 1.0 (16)$ $\Delta V_E = 1.1 \pm 0.8 (24)$ $\Delta V_H = 2.9 \pm 1.6 (8)$


Это означает, что более 40% расположенных в одном месте ГНСС-комплексов имеют значимые расхождения скоростей хотя бы в одной из компонент.


Следовательно

и в местах одиночного расположения ГНСС-комплексов примерно такова же вероятность появления в горизонтальном векторе скорости ошибки ~1 мм/год

Сравнение скоростей по данным - І


6 из 15 пар имеют значимые различия скоростей

Следовательно

перемещения антенны или даже смена приёмника могут привести к изменению скорости станции до 1.5 мм/год, что уверенно обнаруживается спустя год ввиду наличия сезонности в рядах положений

Остаточные скорости после снятия вращения EA плиты в ITRF08

Выводы

По результатам исследования более сотни пар рядов наблюдений на близко расположенных ГНСС-станциях обнаружено:

- Вероятность появления в горизонтальном векторе скорости ошибки до 1 мм/год составляет около 40%. Иначе говоря, почти каждая вторая произвольно выбранная ГНСС-станция может иметь такую ошибку в одной из компонент скорости.
- Уверенной зависимости от марки приёмника и антенны в разностях скоростей не обнаружено. Также нет зависимости от установки антенн на крышах или мачтах по сравнению с установкой на наземных геодезических столбах.
- В каждом конкретном случае при перемещении антенны или даже смене приёмника имеется немалая вероятность изменения скорости. Существенно, что такое изменение уверенно обнаруживается спустя год и больше по причине его маскировки сезонными вариациями в положении станции.

Спасибо за внимание