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1. INTRODUCTION

Traditionally, researchers single out certain “refer�
ence points” in the development of the 11�year cycle
of solar activity. The general tendency is to use for
these moments solar activity extrema, which are found
from smoothed Wolf numbers or other activity indices,
e.g., the areas or amounts of sunspot groups; the times
of the extrema may differ slightly in different indices
(Hathaway, 2010).

Solar minima are commonly used as reference
points to measure the phase of a given 11�year cycle
and to study the phase dependences of the various
cycle parameters. One of these parameters, the evolu�
tion of which throughout the cycle is of interest to
researchers, is the average sunspot latitude (ASL).

It is well known that the behavior of sunspot lati�
tudes during the 11�year cycle is described by Spörer’s
law: the first sunspot groups are formed at high heli�
olatitudes, and then the center of activity gradually
shifts toward the equator (Carrington, 1858; Spörer,
1880; Hathaway et al., 2003).

Sokoloff and Khlystova (2010) showed that the
Sun’s toroidal magnetic field, which plays an impor�
tant role in the work of the solar dynamo, has a very
simple structure, which is visualized without major
distortion in the latitude–time distribution of sunspot
known as Maunder’s butterfly diagram. This opens up
the possibility to test various dynamo models by ana�
lyzing their consistency with the observed features of
the latitudinal and temporal evolution of sunspots
throughout the 11�year cycle (e.g., the change in the
shape and size of the butterfly wings, the pattern of the
equatorward sunspot drift, etc.).

It has long been observed that ASL behavior
changes less from cycle to cycle than the amplitude
parameters of solar activity. The fact that the drift
described by Spörer’s law is almost independent of the
cycle number has been reported, e.g., in (Eigenson
et al., 1948; Vitinskii, Kopetskii, and Kuklin, 1986). A
similar conclusion was made by Hathaway (2011),
who showed that cycle starting times (Tcst) can be
shifted relative to their minima so that the ASL behav�
ior would be universally dependent on the time that
passed since Tcst.

The times Tcst were calculated in (Hathaway, 1994)
based on the behavior of the Wolf numbers near the
11�year cycle minima. However, it would be interest�
ing to obtain moments with similar properties without
relying on solar cycle amplitudes. In this work we
present one of the ways to do it, using the ASL data
only. We also discuss the relationships of the resulting
moments with solar cycle amplitudes.

2. DATA AND METHOD

The source of data on sunspot latitudes was the
extended Greenwich catalog, which includes the orig�
inal Greenwich data and their continuation by
NOAA/USAF (http://solarscience.msfc.nasa.gov/
greenwch.shtml) and contains the coordinates and
areas of sunspot groups for the period 1874–2013.

It is known that sunspot groups corresponding to
different wings in the butterfly diagram (thus, to dif�
ferent cycles) may coexist in the neighborhood of cycle
minima. Taking this fact into consideration, we
divided the sunspot groups in each hemisphere into
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two subsets corresponding to the upper and lower but�
terfly wings (the technique used to make this division
was described in detail in (Ivanov et al., 2011)).

Using the catalog data, we calculated for a given
hemisphere and wing the daily numbers G of sunspot
groups and their average latitudes ϕ weighted by sun�
spot areas. The resulting G and ϕ were averaged over
the solar rotations. Taking into account the above divi�
sion, we obtained for each rotation from two (if the
butterfly wings did not overlap at all) to four (if the
wings overlapped in both hemispheres) values of the
“partial” G index. In this case, as is shown in (Ivanov
and Miletsky, 2011), the total G index for the disk
(sunspot number index), after appropriate renormal�
ization, is very close to the GSN index proposed by
Hoyt and Schatten (1998).

Below we also use the times of the extrema Tmin and
Tmax of the solar cycles. They were calculated using the
G index smoothed with a 13�point sinusoidal filter
(SIN13), which was determined by the weights

These times of minima in G are close to the min�
ima in the Wolf numbers Tmin,W smoothed using the
same filter: the mean square difference between the
times of minima in these two indices for cycles 12–23
is approximately 0.14 yr.

3. CYCLE LATITUDE PHASES

We now consider a series of rotation averages ϕi(τ)
depending the cycle amplitude phase τ = t – Tmin, i,
where t is time and Tmin, i are the times of minima in the
smoothed G index for a given cycle and hemisphere.
Here the i index labels either the cycle number only or,

wj jπ/14( ),cos= j –6, …, 6.=

if we are working with hemisphere indices, the cycle
and the hemisphere.

Figure 1 shows the rotation averages ϕi for all the
cycles and hemisphere as a function of τ. We seek to
approximate the resulting dependence by exponential
functions

where a and b are free parameters for which the
weighted least squares method (with weights G) yields
a = 26.6 ± 0.2° and b = –0.126 ± 0.002 yr–1. The first
parameter indicates the reference latitude at which the
exponential curve crosses the Y axis; the second stands
for the velocity of the equatorward drift of the sunspot
latitudes. Very similar values for the coefficients (a =
26.8° ± 0.3° and b = –0.125 ± 0.003 yr–1) were
obtained in (Ivanov and Miletsky, 2013), which used
the same data but no division by butterfly wings and
made approximations only for a portion of the depen�
dence in the phase range 2 ≤ τ ≤ 8 yr. The approximat�
ing curves ±Ψ(τ; a0, b0) are depicted in Fig. 1. The
RMS error of the approximation is 2.5° (the correla�
tion coefficient R = 0.96).

Similar exponential functions were used to describe
the average latitude by Hathaway (2011) and Rosh�
china and Sarychev (2011), who obtained similar val�
ues for the b parameter: –0.1237 yr–1 (Roshchina and
Sarychev, 2011) and –1/90 mo–1 ≈ –0.13 yr–1 (Hath�
away, 2011).

The resulting total curve can be used to describe
ASL behavior in individual cycles. We approximate
ϕi(τ) by the functions Ψ(τ; a0, b0), where the general
parameter b0 was found above and ai is fitted for each
cycle and hemisphere i. These functions can be put in
a general form 

where ΔTi = 1/b0log(a0/ai) are shifts of the individual
curve, which are found so as to minimize the mean
square difference between the approximating function
and ϕi(τ) for a given i.

The search for an optimal shift ΔT is illustrated in
Fig. 2 by the example of the northern hemisphere in
cycle 19; the smoothed average latitudes and the
resulting approximating curves for all cycles are shown
in Fig. 3.

The same procedure can be used to find the shifts
ΔTi for ASLs without the division by hemisphere. In
this case the absolute ASL values are averaged over the
entire disk and the i index labels the cycle number only.
The resulting times T0 = Tmin + ΔT for the separate
hemispheres and whole disk are given in Table 1. The
table also cites the times of minima Tmin and maxima
Tmax and the maximum values of the SIN13�smoothed
G index.

Apparently, Ti indicate the times at which the lati�
tude of the individual approximating curves reaches

Ψ τ a b, ,( ) ±a bτ( ),exp=

Ψ τ ai b0, ,( ) Ψ τ ΔTi; a0 b0,–( ),=
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Fig. 1. Rotation�average sunspot latitudes (dots) and their
approximation by the functions ±Ψ (τ; a0, b0).
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the reference value Ψ(ΔTi; ai, b0) = Ψ(0; a0, b0) = a0 =
26.6° (Fig. 2).

It should be noted that, generally speaking, we
could use an individual parameter bi for each cycle and
hemisphere. However, as shown by our calculations,
the resulting decrease in the approximation errors is
small (on average, a few percent); hence, we can use
the general parameter b0 for all cycles without com�
promising the quality of the ASL approximation.

The times T0 can be used to calculate the phase of
the 11�year cycle in the same way as the times of min�
ima Tmin. To emphasize the difference between the two
definitions of the phase, we refer to τ = t – Tmin as the
cycle amplitude phase (CAP) and to χ = t – T0 as the
cycle latitude phase (CLP). Consequently, it is natural
to call T0 the latitude phase reference points (LPRPs).

Since in each cycle and hemisphere the characteristic
latitude of the approximating curve ψ = Ψ(χ; a0, b0)
corresponds to the same χ, the value ψ also can be used
as measure of ASL.

Since the LPRPs were found under the assumption
that the drift of the sunspot zones in the 11�year cycle
(Spörer’s law) is universal, they are close, as expected,
to the cycle starting times Tcst found by Hathaway
(2011). It should be noted, however, that the Tcst were
found by analyzing the behavior of the Wolf numbers
near the 11�year cycle minimum, whereas the only
source of data to calculate T0 were the sunspot lati�
tudes.

In addition, it should be noted that we can choose
any other baseline latitude instead of a0 = 26.6°. This
would result in a general shift of all T0; however, it
would not affect the properties that are discussed
below. Therefore, it would be incorrect to consider the
LPRPs as the 11�year cycle starting times. In this way
they differ from the cycle starting times in (Hathaway,
2011), which are, in a sense, the times at which the
activity in the cycle begins.

4. PROPERTIES OF THE LATITUDINAL 
PHASE REFERENCE POINTS

Figure 4 shows the shifts of the LPRPs relative to
the cycle minima Tmin for the two hemispheres and
whole disk as a function of the cycle number. There is
a noticeable secular trend: the shifts in cycles 12–21
increase with the cycle number. A similar yet less pro�
nounced trend can be seen in the shifts Tcst – Tmin.

This trend can be explained by the joint action of
two factors: the rising phase of the secular cycle during
the first two thirds of the 20th century and the correla�
tion between ΔT and cycle amplitude. In fact the cor�
relation coefficient between ΔT and the sunspot group
index at the cycle maxima Gmax is +0.74 (for the whole
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a0 = 26.6°

ΔTN19 = 0.86 yr

ϕ

τ, years

Fig. 2. Search for an optimal shift illustrated by the exam�
ple of the northern hemisphere in cycle 19. The thin curve
shows the rotation average sunspot latitudes; the dotted line
is Ψ(τ; a0, b0); and the thick solid line is Ψ(τ; aN19, b0).
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Fig. 3. Smoothed average sunspot latitudes and the approximating curves Ψ(τ; ai, b0).
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disk) and +0.61 (for separate hemispheres) (Table 2
and Fig. 5). The plus sign of the correlation coefficient
indicates that T0 is behind the cycle minima in high
cycles and ahead of them in low cycles. This means, in
turn, that for a given τ (i.e., time measured from the
cycle minimum), sunspot groups in high cycles are, as
a rule, located higher.

The use of LPRPs may strengthen the well�known
inverse correlation between the length of the rising
phase Tinc = Tmax – Tmin and the amplitude of the
11�year cycle (Waldmeier’s rule). The correlation is typ�

ically calculated using the Wolf numbers; the corre�
sponding coefficient for cycles 12–23 (the epoch of the
extended Greenwich catalog) is R = –0.65. The correla�
tion coefficient for G is slightly lower, R = –0.63, if the
index is taken for the whole disk and falls to R = –0.25
when calculated for the separate hemispheres. How�
ever, if we modify Waldmeier’s rule by taking the inter�
vals T0, inc = Tmax – T0 as the lengths of the rising
phases, the correlations for G increase to R = –0.83
(whole disk) and R = –0.56 (separate hemispheres)
(Table 2).

Table 1. Solar cycle extrema for the G index and T0

Northern hemisphere Southern hemisphere Whole disk

Cycle Tmin T0 Tmax Gmax Tmin T0 Tmax Gmax Tmin T0 Tmax Gmax

12 1879.1 1877.9 1881.8 2.84 1878.6 1878.6 1884.1 4.09 1879.0 1878.3 1884.1 6.76

13 1889.5 1889.0 1894.4 3.65 1890.1 1889.9 1893.5 5.20 1890.1 1889.4 1893.6 8.84

14 1901.9 1900.5 1906.2 3.70 1901.3 1901.3 1908.3 3.08 1901.4 1900.8 1906.2 5.61

15 1912.5 1912.6 1917.6 5.43 1913.5 1913.3 1917.7 4.58 1913.5 1912.7 1917.7 9.99

16 1923.9 1923.3 1929.8 3.85 1923.3 1923.0 1927.3 4.15 1923.3 1923.0 1928.4 7.43

17 1933.9 1934.1 1937.4 6.21 1933.3 1934.1 1938.4 4.98 1933.7 1934.0 1937.4 10.69

18 1944.4 1944.2 1949.9 6.02 1944.1 1943.7 1947.5 6.56 1944.2 1944.0 1947.6 12.36

19 1954.2 1955.0 1959.3 9.14 1954.3 1954.6 1957.8 7.23 1954.3 1954.9 1958.0 15.05

20 1964.6 1964.7 1967.3 5.78 1964.9 1965.1 1970.2 5.07 1964.6 1964.7 1970.3 9.54

21 1976.2 1976.1 1979.5 8.10 1975.2 1976.9 1979.1 6.93 1976.1 1976.4 1979.5 14.57

22 1986.0 1987.1 1989.7 7.33 1986.4 1986.9 1991.4 8.12 1986.3 1987.1 1989.7 13.58

23 1996.8 1996.8 2001.7 5.29 1996.4 1997.1 2002.4 5.53 1996.5 1996.9 2002.1 10.36
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Fig. 4. Shifts of T0 relative to the cycle minima Tmin for the
northern (upward pointing triangles) and southern (down�
ward pointing triangles) hemispheres and for the whole
disk (solid circle symbols). The open circle symbols indi�
cate the shifts of the times Tcst (Hathaway, 2011).
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It should be noted that the behavior of the solar
activity indices in the 11�year cycle looks different
when the cycle phase is described by different vari�
ables. Figure 6a shows the behavior of G(τ) (two hemi�
spheres; cycles 12–23) as a function of the CAP. It is
evident that the dispersion of individual curves in the
rising phase is approximately the same as in the declin�
ing phase (Fig. 6c). In Fig. 6b G(ψ) is plotted as a
function of the CLP. In this case the situation is differ�
ent: the dispersion is evidently lower in the rising
phase. A similar situation is observed for the Wolf
numbers (Fig. 6d). The latter fact was noted already by
Gnevyshev and Gnevysheva (1949), who showed that
the Wolf number in the declining phase depends on the
average sunspot latitudes.

It can be shown that for ψ < 12° this dependence
could be quite accurately (with an RMS error of
approximately 0.4 units) described by the relationship

(1)G ψ( ) 0.061ψ
2 0.557ψ– 1.228.+=

The corresponding equation for W (with an error of
approximately 8 units) is

(2)W ψ( ) 1.181ψ
2 9.224ψ– 14.263.+=

Table 2. Correlation coefficients R and confidence levels CL
for the relationships between the amplitudes and the differ�
ences between the various reference points in solar cycle for
the separate hemispheres (N&S) and whole disk (Disk)

N&S Disk

R CL R CL

R (Gmax, ΔT) +0.61 0.999 +0.74 0.994

R (Wmax, Tinc, W) –0.65 0.98

R (Gmax,Tinc) –0.25 0.75 –0.63 0.97

R (Gmax, T0, inc) –0.56 0.996 –0.86 0.9997
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5. ESTIMATES FOR THE AVERAGE SUNSPOT 
LATITUDE FROM THE AMPLITUDE INDICES

To reconstruct the spatial patterns of solar activity
in the past, it is important to have ASL estimates for
the times preceding the Greenwich catalog (Nago�
vitsyn et al., 2010). These estimates could use Eq. (2),
which relates ASLs with the Wolf number. Indeed, if
we know the behavior of W in the declining phase, we
can find the value of T0,W at which the function
W(Ψ(t – T0, W; a0, b0)) best approximates the observed
values of W over the phase range ψ < 12°.

We consider T0,W as an estimate for T0. To control
the accuracy of the estimate, we compared T0,W and T0
over the entire range (cycles 12–23; Table 3). The differ�
ence between these times is substantial (the RMS error is
roughly 0.5 yr); however, the shifts ΔT = T0 – Tmin and
ΔTW = T0,W – Tmin,W have the same sign in 10 cases out
of 12, and the correlation between the shifts is rather
high (R = 0.67), which means that the reconstruction
is qualitatively correct.

The resulting T0,W allow us to build a series of
curves Ψ(t – T0, W; a0, b0), which can be considered as
ASL estimates.

Figure 7 shows an ASL reconstruction made by the
above method using a monthly series of Wolf numbers
since 1749. It is evident that the reconstructed values
(thick gray curves) are well consistent with the actual
latitudes in the Greenwich epoch (thin black curve).
The estimates for the earlier times are also consistent
with the average latitudes in the compilation of early
observations in the ESAI database (Nagovitsyn et al.,
2004) and Schwabe’s observations (Arlt et al., 2013);
in the latter case, a small systematic deviation is
observed for cycle 9 only. The mean error of the ASL
estimate based on the reconstructed approximating

curves is only 10% larger than that of the estimate
made using the curves built from the exact LPRPs.

6. CONCLUSIONS

In this work we introduced a new type of reference
moments describing the development of the 11�year
solar cycle, i.e., the latitude phase reference points
(LPRPs) T0.

These times have a number of remarkable proper�
ties that distinguish them from cycle minima, which
are traditionally used as points from which the phase is
measured. First of all, the calculation of LPRPs is
based on the information about the average sunspot
latitudes rather than amplitude indexes.

The use of T0 makes it possible to define the cycle
latitude phase in a given cycle and hemisphere χ = t –
T0. The average sunspot latitude is approximately
(RMSE ≈ 2.5° for rotation averages) described by a
universal monotonically decreasing function of χ:

ψ(χ) = a0exp(b0χ),

where the coefficients a0 = 26.6° ± 0.2° and b0 =
⎯0.126° ± 0.002 yr–1 do not depend on the cycle
amplitude. When the cycle phase is defined as the time
that has passed since the cycle minimum and is
described by the variable τ = t – Tmin, no such univer�
sality is observed, and the average latitudes can be
described by the function

ψ(t) = aiexp(b0τ),

where ai tends to be larger for high cycles. Neverthe�
less, the b0 coefficient remains universal. This means
that the velocity of the equatorward drift shows no
notable dependence on the amplitude of the 11�year

Table 3. Reconstruction of LPRPs T0, W from the Wolf numbers for cycles 1–23 and comparison with the exact times T0 for
cycles 12–23

Cycle T0,W T0 ΔT ΔT Cycle T0,W T0 ΔT ΔT

1 1756.2 0.9 13 1889.0 1889.4 –1.1 –0.7

2 1765.8 –0.8 14 1901.4 1900.8 –0.3 –0.6

3 1774.7 –0.7 15 1912.7 1912.7 –0.7 –0.8

4 1786.4 2.0 16 1922.6 1923.0 –0.7 –0.4

5 1798.0 –0.4 17 1934.1 1934.0 0.4 0.3

6 1809.9 –0.7 18 1944.5 1944.0 0.2 –0.2

7 1824.0 0.6 19 1954.6 1954.9 0.4 0.6

8 1833.7 0.1 20 1965.9 1964.7 1.3 0.2

9 1845.5 2.0 21 1976.9 1976.4 0.7 0.3

10 1856.6 0.6 22 1986.4 1987.1 –0.4 0.8

11 1866.8 –0.4 23 1996.9 1996.9 0.5 0.4

12 1877.9 1878.3 –1.0 –0.7



GEOMAGNETISM AND AERONOMY  Vol. 54  No. 7  2014

SPÖRER’S LAW AND RELATIONSHIP BETWEEN THE LATITUDE 913

cycle, which confirms the conclusions made in (Hath�
away, 2011; Roshchina and Sarychev, 2011).

The difference between the two reference times
ΔT = T0 – Tmin also increases with the increase in the
cycle amplitude (Fig. 5). Consequently, Waldmeier’s
rule (rather its analogue) is more pronounced, espe�
cially in the G index, if we consider the times T0, not
Tmin, as the reference points of the cycle phase.

We emphasize that the relationship between the
cycle amplitude, the time of minimum, and the behav�
ior of average sunspot latitudes reflects the depen�
dence between two types of solar activity characteris�
tics. The characteristics of the first type (cycle ampli�
tudes and the times of minima and maxima) are
calculated using the cycle strength parameters, and
those of the second type are based on the spatial distri�
bution of activity across the disk. The form of the rela�
tionship between the two types of parameters is a priori
not obvious. The well�known Spörer’s law, in its tradi�
tional formulation, is a qualitative statement about
sunspot latitudes having a tendency to decrease over
the cycle. In our paper we showed that, first, the aver�
age sunspot latitude curve is, with known accuracy,
universal, provided that the cycle phase is measured
from the time T0, and, second, the shifts in said curve
relative to the cycle minimum T0 – Tmin depend on the
cycle amplitude. Thus, we propose a quantitative rela�
tionship between the spatial and power characteristics
of the cycle.

In addition to the aforemetioned, the universal
nature of the latitudinal drift law is manifest in the fact

that the level of activity in the descending phase of the
cycle is quite closely related to the CLP and, thus, with
sunspot latitudes. This relationship enables us to
reconstruct the behavior of the average latitude from
the amplitude indices, e.g., the Wolf numbers (as
shown above) or GSN index, which is also known for
the pre�Greenwich epoch.

The regularities in the latitudinal sunspot distribu�
tion and its development over the 11�year cycle impose
certain patterns on the possible mechanisms of the
solar cycle. The fact that the equatorward drift velocity
of the sunspot zones is independent of the cycle ampli�
tude speaks in favor of the dynamo models that do not
use the meridional circulation effect (Pipin, Sokoloff,
and Usoskin, 2012). The fact that LPRPs tend to lag
relative to minima of strong cycles and be ahead of
minima of weak cycles could be another argument in
favor of theoretical models that can explain this regu�
larity. Finally, the tight relationship between the aver�
age sunspot latitude and the level of activity in the
descending branch of the cycle may be a consequence
of the change in magnetic field generation and should
also be taken into account in realistic models of the
solar cycle.
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