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INTRODUCTION

The Spörer law, signifying the cyclic drift of the
main sunspot�generating zone toward the equator, is
the most pronounced spatial manifestation of the
11�year cycle. This law is usually characterized by time
variations in the mean sunspot group latitude. It was
previously (e.g., in (Vitinsky et al., 1986)) noted that
the curves, which reflect this dependence for different
cycles, “almost coincide.”

The recent works devoted to studying this problem
(Hathaway, 2011; Roshchina and Sarychev, 2011; Ivanov
and Miletsky, 2012) indicated that the curves describing
the mean latitude drift shape in 11�year cycles can be
reduced to an integrated mean cyclic curve without sig�
nificant loss of accuracy by shifting these curves along the
time axis and reducing them to a certain initial reference
point. In turn, this curve is adequately represented by an
exponent equation with two parameters.

We also established (Ivanov et al., 2011) that most
unimodal annual latitudinal activity distributions can
be approximated by the Gaussian (normal) distribu�
tion in a first approximation. If the annual latitudinal
sunspot distributions are considered to be Gaussian,
the average latitude unambiguously characterizes the
position of the sunspot�generating zone center. In this
paper, we consider the following approximation: we
study the available skewness in the sunspot activity lat�
itudinal distributions since the average latitude ceases
to be the only characteristic of this center in the pres�
ence of this skewness.

DATA PROCESSING

We used the data on sunspots presented in the
Greenwich catalog and its extension NOAA/USAF

(http://solarscience.msfc.nasa.gov/greenwch.shtml)
for 1874–2011. We selected one year as a time interval
used to calculate the latitudinal distribution parame�
ters. The value of the average latitude varies insignifi�
cantly during a year; at the same time, this interval
gives a representative data sample.

At the first stage, we eliminated most multimodal
distributions originating as a result of the repeated lat�
itudinal superposition of adjacent cycles. Each cycle
(from cycle 12 to cycle 23) was divided into years,
counting off from the minimum point. It turned out
that 73% of multimodal (i.e., statistically indetermi�
nate) and only 27% of unimodal distributions fall on
the first years of the cycles, counting off from the min�
imum, and in years 10 and further. On the contrary,
only 23% of multimodal distributions and 77% of uni�
modal distributions (79% in hemisphere N and 75% in
hemisphere S) fall on the cycle phases from years 2 to 9.
Therefore, to continue the studies, we selected the
interval from years 2 to 9 in each of these cycles and
obtained 192 annual latitudinal distributions (96 dis�
tributions in either solar hemisphere) for these years.

We tried to trace the time variations in the index of
skewness, characterizing the deviations of mean lati�
tudes from other distribution center characteristics. As
such an index, we selected the difference between the
mean (Lmean) and median (Lmed) latitudes (DMM =
Lmean – Lmed). This value is entered into the
numerator of the expression for the known Pearson’s
skewness coefficient (A = 3(DMM)/σ) and can be
considered as an absolute skewness index. We should
note that DMM and A correlate well in the obtained
distributions (their correlation coefficients are 0.971
and 0.972 in the Northern and Southern hemispheres,
respectively). Therefore, further results (highly reli�
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able for DMM) can also be applied to coefficient A.
Among 192 (according to the distribution number)
values of the DMM difference, 146 distributions
(76%) are significant according to the criterion based
on the verification of the coefficient A significance. In
addition, the DMM differences have the “plus” sign
(i.e., Lmed < Lmean) for 141 (73%) of 192 values,
which indicates significant different from chance: the
confidence level is CL > 99.9%.

To test the distributions for skewness, we used the
index of the sunspot group number (G) in addition to
DMM (Ivanov and Miletsky, 2011). Let GL and GH
be the partial values of the G index for sunspot groups
that are located higher (closer to the pole) and lower
(closer to the equator) than the mean latitude. In such
a case, the GLH = GL – GH difference characterizes
the sunspot activity distribution skewness relative to
the mean latitude. According to the χ2 criterion, it
turned out that 107 (56%) of 192 GLH values signifi�
cantly differ from zero (CL > 95%). We should note
that the signs of the DMM and GLH indices correlate
well and completely coincide (the correlation coeffi�
cient is R = 0.796, the number of points is K = 192; the
confidence level CL > 99.99%).

Thus, most annual latitudinal distributions of sun�
spot activity are asymmetric. In these cases, the median
is considered to be a more representative estimate of the
distribution center than the mean value (Ageel, 2000).

RESULTS

For either hemisphere in each cycle, we con�
structed dependences representing variations in the
mean and median annual latitudes as a function of the
11�year cycle phase. The curves of the mean (Lmean)
and median (Lmed) latitudes, which were obtained as
a result of averaging these dependences, are presented
in Fig. 1 (left panel). It is interesting that the relative

position of the curves is systematic. In the middle of
the cycle, the median latitudes (Lmed) are as a rule
located lower than the mean ones (Lmean). The curve
of the difference between these latitudes (DMM) (the
maximum of which falls on the fourth year of the cycle
with the Lmean and Lmed values 17.1° and 16.4°,
respectively) is presented in Fig. 1 (right panel). It is clear
that the skewness index (DMM) value is positive for all
phases from the range 2 < T < 9 and increases toward the
cycle center, when the mean latitude is far from the equa�
tor and the upper sunspot generation boundary.

A similar phase dependence is also obtained for the
skewness index (GLH), which is positive for all phases
(except T = 9) and has a maximum in the fourth year
of the cycle. When GLH is averaged over all years, it
accounts for 16.5% of GL.

To study the phase curve shape for different activity
levels, we divided the cycles into three groups (accord�
ing to (Hathaway, 2011)): small (cycles 12–14 and 16;
the Wolf number at a maximum is Wmax < 90),
medium (cycles 15, 17, 20, and 23; 90 < Wmax < 150),
and large (cycles 18, 19, 21, and 22; Wmax > 150). The
DMM maximums for small, medium, and large cycles
(Fig. 2, left panel) fall on the phases of growth and
maximum of these cycles (Fig. 2, right panel). It is evi�
dent that the DMM values for large (medium) cycles
are as a rule larger than the corresponding phase values
for medium (small) cycles.

Then, we studied the existence of an interrelation
between DMM and G. The correlation between these
indices is significant (CL > 99.9%) but not very strong
(R = 0.39, K = 192). If we distribute G over gradations
(0–1, 1–2, etc.) (the regression equation squares and
straight line in Fig. 3), the correlation increases con�
siderably (R = 0.87, K = 9, CL = 99.9%). It is clear
(see Fig. 3) that the number of negative DMM values
decreases considerably and the distribution skewness
value increases with increasing activity level. For G ≥ 6,
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Fig. 1. Values of the mean (Lmean) and median (Lmed) annual latitudes (triangles and upside triangles, respectively; left panel)
and difference between these values DMM (right panel) at different phases of the 11�year cycle. The sizes of the symbols are pro�
portional to the activity level (G).
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all DMM values are positive; i.e., the median latitude
values are always smaller than the mean values in these
cases. We should note that the correlation between
DMM and G increases pronouncedly (R = 0.56, K = 96;
CL > 99.99%) when hemispheres N and S are com�
bined.

The correlation between GLH and G is higher than
between DMM and G (R = 0.58, K = 192; CL >
99.99%). When the hemispheres are combined, the
correlation between GLH and G becomes very signif�
icant (R = 0.76, K = 96; CL > 99.99%). In this case,
39  out of 40 (98%) GLH values are positive for G ≥
Gmean = 6.2. Thus, in this case, the sunspot activity
at latitudes lower than the mean latitude is almost

always higher than the activity at latitudes higher than
the mean latitude.

We also studied the interrelation between DMM
and G on the timescales of the 11�year cycles. We cal�
culated the average DMM values over the cycle (for
phases of 2–9 years) and constructed the dependence
of the DMM values on the maximal annual G values
in the corresponding cycles (Gmax) for 12 cycles in
either hemisphere. For 24 points (two hemispheres in
12 cycles), the correlation between Gmax and DMM
is rather high (R = 0.71, K = 24, CL > 99.9%). For
24 cycles, DMM < 0 only in the Northern hemisphere
during weak cycles (12, 14, 16), whereas skewness is
positive and increases with increasing cycle amplitude
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Fig. 2. Values of the differences (DMM) between the mean and median annual latitudes (left panel) and the G index (right panel) at
different phases of large (squares and solid lines), medium (circles and dashed lines), and small (triangles and dotted lines) 11�year
cycles.
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Fig. 3. Values of the differences between the mean and
median annual latitudes (DMM), depending on the
G index value (circles for the initial G values and squares
for G values averaged over gradations 0–1, 1–2, etc.). The
sizes of the circles are proportional to the G value.
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in medium and strong cycles. When the hemispheres
are combined, the correlation between 12 average
DMM values over a cycle and the corresponding cycle
amplitudes (Gmax) (Fig. 4) is even closer (R = 0.90,
K = 12, CL > 99.9%). In this case, DMM > 0 for all
cycles.

CONCLUSIONS

The performed analysis indicates that considerable
skewness is observed in most annual latitudinal distri�
butions of sunspot activity and this skewness increases
near the 11�year cycle maximum. An increase in the
number of sunspot groups is accompanied by an
increase in the distribution skewness. When the sun�
spot index value is larger than the average level, the
number of sunspot groups at latitudes lower than the
mean latitude in either hemisphere is as a rule larger
than this number at latitudes higher than the mean lat�
itude. In this case, the imbalance increases with
increasing total level of sunspot activity. When averag�
ing over a cycle is performed, the correlation between
skewness and sunspot activity increases pronouncedly.
In medium and large 11�year cycles, the distribution
skewness is positive and its value is related to the cycle
amplitude.

The achieved results agree with 11�year cycle mod�
els, which should be used to relate the specific features
of the low�latitude meridional circulation (and, con�
sequently, the latitudinal sunspot drift) to the level of
low�latitude (sunspot) solar activity (Nandy, 2011;
Nandy et al., 2011). The dependence of the sunspot
distribution skewness on the activity level and 11�year
cycle phase, detected above, can be among the mani�
festations of such a correlation.
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