Влияние гамма излучения на изотопический состав межзвездной среды.

<u>В.В. Клименко</u>^{1,3}, А.В. Иванчик^{1,2,3} и Д.А. Варшалович^{1,2,3}

¹Физико-Технический институт им. А.Ф. Иоффе ²Санкт-Петербургский Государственный Политехнический Университет ³Санкт-Петербургский Государственный Академический Университет

30 сентября 2010 г

III Пулковская молодежная астрономическая конференция, Пулково 2010

Актуальность

- Определение отношения количества легких элементов (D,³He,⁴He,^{6,7}Li) к количеству водорода в барионном веществе - один из способов оценки барионного содержания Вселенной Ω_b.
- Согласно Стандартной модели состав среды, сформированный за счет первичного нуклеосинтеза, определяется единственным параметром - относительной плотностью барионного вещества Ω_b.
- D наиболее чувствителен к изменению параметра Ω_b .

Проблема первичного вещества. D/H

Разброс результатов отношения D/H в первичных облаках превышает наблюдательные погрешности отдельных измерений

Большая дисперсия результатов объясняется неучетом систематических ошибок, велеичины которых трудно оценить (Steigman 2007).

Эволюция D после BBN проста: он только разрушается → нет физической теории, которая бы объясняла несоответствие экспериментальных данных. (Steigman 2007).

В работе (N.Yu. Gnedin & J.P. Ostriker, 1992) указывается на эффект влияния фотоядерных реакций на изменение состава межзвездной среды после завершения первичного нуклеосинтеза.

Метод

В спектре излучения квазара присутствует жесткое рентгеновское и гамма-излучение;

Высокоэнергичные гамма-кванты взаимодействуют с межзвездным веществом, изменяя изотопический состав этого вещества. Состав среды (Steigman 2007).

X _D	D/H	$2.68 imes 10^{-5}$
X _{3<i>He</i>}	³ He/H	1.06×10^{-5}
X ₄ _{He}	⁴ He/H	7.90×10^{-2}
X7 <i>Li</i>	⁷ Li/H	4.30×10^{-10}

Система уравнений для концентраций легких элементов.

$$\frac{dX_{4He}}{dt} = -\left(k_{4He \to 3H} + k_{4He \to 3He} + k_{4He \to D+D} + k_{4He \to D+pn} + k_{4He \to 2p+2n}\right)X_{4He}$$
(1)

$$\frac{dX_{3_H}}{dt} = -\left(k_{3_H \rightarrow 3_{He}} + k_{3_H \rightarrow D} + k_{3_H \rightarrow 2n+p}\right)X_{3_H} + k_{4_{He} \rightarrow 3_H}X_{4_{He}}$$
(2)
$$\frac{dX_{3_H}}{dX_{3_H}} = -\left(k_{3_H \rightarrow 3_{He}} + k_{3_H \rightarrow D} + k_{3_H \rightarrow 2n+p}\right)X_{3_H} + k_{4_{He} \rightarrow 3_H}X_{4_{He}}$$
(2)

$$\frac{\lambda X_{3He}}{dt} = -\left(k_{3He \to D} + k_{3He \to n+2p}\right) X_{3He} + k_{4He \to 3He} X_{4He} + k_{3H \to 3He} X_{3H}$$
(3)

$$\frac{dX_D}{dt} = -k_{D \to p+n} X_D + \left(2 \cdot k_{4_{He} \to D+D} + k_{4_{He} \to D+pn} \right) X_{4_{He}} + k_{3_{He} \to D} X_{3_{He}} + k_{3_{H \to D}} X_{3_{H}}$$
(4)

Клименко и др., ФТИ РАН

n .

Фотоядерные реакции

Скорости реакций

Для дейтерия - наиболее простой ядерной системы - сечение взаимодействия можно вычислить аналитически (Берестецкий, Лифшиц, Питаевский, Квантовая электродинамика):

$$\sigma(E) = \sigma_0 Q^{3/2} \frac{(E-Q)^{3/2}}{E^3}$$
(7)

Теоретические расчеты сечений других элементов недостаточно хорошо согласуются с экспериментальными данными (Джибути и др. 1965, Валестра и др. 1977).

$$\sigma(E) = \sigma_0 Q^{\gamma-\beta} \frac{(E-Q)^{\beta}}{E^{\gamma}}$$
(8)

где $\sigma_{0},\,\beta$ и γ - подгоночные параметры.

Сечения реакций. Аппроксимация

Зависимость скоростей реакций от наклонов спектра

Динамика системы определяется соотношением между скоростями реакций, определяющих наработку или распад элемента.

$$k = 10^{-27} \left(\frac{\sigma_0}{1 \text{ Mdaph}}\right) \left(F_0 \varepsilon_0^{\alpha}\right) \left(\frac{Q}{1 \text{ M} \text{B}}\right)^{1-\alpha} \int\limits_{1}^{1000/\text{G}} \frac{(x-1)^{\beta}}{x^{\gamma+\alpha}} dx \tag{9}$$
$$\frac{L_{\gamma}}{4\pi R^2} = \int_{1}^{1000} F_0 \left(\frac{E}{\varepsilon_0}\right)^{-\alpha} E dE \tag{10}$$

1000 / 0

Для квазара с заданной светимостью в диапазоне от 1-1000 МэВ $L_{\gamma} = 10^{49}$ эрг/с, получаем зависимость скоростей реакций от жесткости спектра α .

Клименко и др., ФТИ РАН

Фотоядерные реакции

Эволюция системы

Для времени облучения межзвездного вещества излучением квазара $t_0=1$ млрд. лет изменение концентраций определяется единственным параметром $F_0 \varepsilon_0^{\alpha}$ - величиной плотности потока излучения на энергии 1 МэВ

$$\Delta(X) = \frac{X(t) - X(0)}{X(0)} \simeq f_1(\alpha) \left(F_0 \varepsilon_0^{\alpha} 10^{-27} t \right) + f_2(\alpha) \left(F_0 \varepsilon_0^{\alpha} 10^{-27} t \right)^2 \tag{11}$$

На диаграмме 'плотность потока на энергии 1 МэВ - наклон спектра' определены области 10-процентного изменения содержания элементов в среде.

Клименко и др., ФТИ РАН

Фотоядерные реакции

Эффективный радиус воздествия

Для заданного $t_0 = 1$ млрд.лет и светимости квазара $L_{\gamma} = 10^{49}$ эрг/с определены профили концентраций элементов по мере удаления облучаемой области от квазара.

$$< \left(\frac{X}{H}\right) >= \frac{\int_0^R X(r) 4\pi r^2 dr}{\int_0^R X(0) 4\pi r^2 dr}$$

Учитывая процессы диффузии и переноса вещества в среде, рассматриваем усредненное по объему значение.

Общая статистика

Для квазара светимости $L_{\gamma} = 10^{49}$ эрг/с в диалазоне 1-1000 МэВ и времени облучения среды $t_0 = 1$ млрд. лет:

D	Возрастает до 100 раз на расстояниях $\simeq 0.1~{\rm Knc}$ Увеличивается на 10-процентов на расстояниях $\simeq 10~{\rm Knc}$
³ He	Возрастает до 1000 раз на расстояниях $\simeq 1~{\rm Knc}$ Увеличивается на 10-процентов на расстояниях $\simeq 50~{\rm Knc}$
⁴ He	Уменьшается на 10-процентов на расстояниях ~ 0.5 Кпс

При этом в задаче проявляется автомодельность решения в перенормировке масштаба R для разных L.

$$R_{\rm HOB} = R_{\rm CTAP} \left(\frac{L_{\rm HOB}}{L_{\rm CTAP}} \right)^{(1/2)}$$

QSO 3C 279 (Hartman et al. 2001)

$$F_0 = 4.25 \times 10^{-9}, \varepsilon_0 = 523, \alpha = 0.87$$
(12)

$$z = 0.538, \Omega_m = 0.274, \Omega_{\Lambda} = 0.726, h = 0.705$$
 (13)

$$L_{\gamma} = 10^{49} \mathrm{spr/c} \tag{1}$$

Клименко и др., ФТИ РАН

4)

- Аппроксимированы сечения основных фотоядерных реакций, происходящих в межзвездной среде под влиянием гамма-излучения.
- Определены скорости реакций в зависимости от расстояния до квазара, его светимости в гамма-диапазоне и жесткости спектра.
- Для заданного значения наклона спектра определены пороговые значения спектрального потока, соответствующие 10-процентному изменению относительного содержания D и ³Не в среде.
 Эффективный радиус воздействия излучения квазара светимостью 10⁴⁹ эрг/с в диапазоне 1-1000 МэВ - порядка 1 Кпс.
- Влияние фотоядерных реакций может быть важно для оценки первичного содержания легких элементов.
- Данный эффект может быть использован для регистрации потухших источников интенсивного гамма-излучения.