The magnetic field strength of neutron stars

Nazar R. Ikhsanov

Saint-Petersburg

State University

REFERENCES

- 1. Ikhsanov N.R., Pustil'nik, L.A. & Beskrovnaya, N.G.
- 2. Ikhsanov N.R. & Beskrovnaya, N.G.
- 3. Ikhsanov N.R. & Finger, M.H.
- 4. Ikhsanov N.R.
- 5. Ikhsanov N.R., Pustil'nik, L.A. & Beskrovnaya, N.G.
- 6. Ikhsanov N.R. & Beskrovnaya, N.G.

- 2012 AIP Conf. Proc. 1439, 237
- 2012 Astronomy Reports, 56, 589
- 2012 ApJ, 753, 1
- 2012 MNRAS, 424, L39
- 2012 J. of Phys., Conf. Ser., 372, 012062
- 2013 Astronomy Reports, 57, 287
- 7. Ikhsanov N.R., Kim, V.Y., Beskrovnaya, N.G. & Pustil'nik, L.A. 2013 ApSS, 346, 105

<u>UPPER LIMIT</u>

Gravitational Energy \equiv Magnetic energy

 $B_{\rm max} \sim 10^{18} \, {\rm G}$

QUANTUM CRITICAL FILED

$$B_{\rm cr} = \frac{m_{\rm e}^2 c^3}{e \hbar} \simeq 4.4 \times 10^{13} \,{
m G}$$

REGULAR FIELD OF NEUTRON STARS

Magnetic Flux Conservation during Collapse

$$B_{\rm ns} \sim B_{\rm in} \, \left(\frac{R_{\rm in}}{R_{\rm ns}}\right)^2 \simeq 10^{12} \, \rm G \, \times$$
$$\times \, \left(\frac{B_{\rm in}}{100 \, \rm G}\right) \left(\frac{R_{\rm in}}{10^6 \, \rm km}\right)^2 \left(\frac{R_{\rm ns}}{10 \, \rm km}\right)^{-2}$$

Magnetic Field Measurements

There are four ways of constraining the pulsars B field

• Measure the lowest cyclotron absorption line energy

$$B_{\text{CRSF}} \leq 10^{12} \left(\frac{E_{\text{cyc}}}{11.6 \,\text{keV}}\right) \,\text{G}$$

- Measure the spin-down rate of pulsars;
- Measure the spin-up rate at high luminosity of the accretion-powered X-ray pulsars;
- Observations of the cutoff of accretion due to centrifugal inhibition;

Вспышки излучения 4U 0115+63 1999 и 2004 гг.

INTEGRAL/JEM-X + IBIS

Е_{сус3} = 34.6+/-0.2 кэВ

Е_{сус4} = 44.9+/-0.3 кэВ

 $E_{cyc1}/E_{cyc2}/E_{cyc3}/E_{cyc4} = 1/1.9/3.1/4.0$

4U0115+63

~1x10³⁷ – ~2x10³⁸ эрг/с (d~7 кпс)

Зависимость доли пульсирующего излучения от светимости и энергетического диапазона

Временной анализ данных обсерватории ИНТЕГРАЛ/IBIS в узких энергетических каналах. Только яркие источники (поток в 20-50 кэВ > ~100 mCrab):

Источник

4U 0115+63 V 0332+53 A 0535+262 Hercules X-1 Vela X-1 GX 301-2 GX 1+4 Cen X-3 OAO 1657-415 EXO 2030+375

Ecyc

~11, 21, 34, 45 кэВ ~28, 55 кэВ ~45, 100 кэВ ~38 кэВ ~22, 56 кэВ ~50 кэВ -~31 кэВ ~78 кэВ

Cyclotron Line Measurements

Class	Name	E _{cyc} (keV)	Reference
Be/X-ray	EXO 2030+375	10.5	Wilson et al. 2007
	4U 0115+63	11.5	White, Swank & Holt, 1983
	V 0332+53	28.5	Makishima et al., 1991
	X Per	28.6	Colburn et al., 2001
	Cep X-4	30.0	Mihara et al. 1991
	XTE J1946+274	34.9	Heindl et al. 2001
	MX 0656-072	36.0	McBride, V.A. et al., 2005
	A 0535+26	47.0	Caballero et al 2007
Disk Fed	Cen X-3	30.0	Burderi et al., 2000
	4U 1626-67	39.0	Coburn et al. 2000
	Her X-1	42.0	Manchanda, 2003
Wind Fed	4U 1907+09	18.3	Cusumano et al. 1998
	4U 1538-52	20.7	Robba et al. 2001
	2S 0114+65	22.0	Bonning et al. 2005
	Vela X-1	23.3	Kreykenbohm et al., 2002
	4U 2206+54	32.0	Blay et al., 2006
	GX 301-2	42.4	La Barbera et al. 2005

Accretion-powered pulsars in wind-fed HMXBs

MASS CAPTURE

Relative velocity

Bondi radius

Mass capture rate

$$V_{\rm rel} = c_{\rm s} + |\vec{V}_{\rm orb} + \vec{V}_{\rm w}|$$
$$r_{\rm G} = \frac{2GM_{\rm ns}}{V_{\rm rel}^2}$$

 $\dot{\mathfrak{M}}_{\mathrm{c}} = \pi r_{\mathrm{G}}^2 \ \rho_{\infty} \ V_{\mathrm{rel}}$

Mass accretion rate $\hat{\mathfrak{M}}_{a} = \frac{L_{x}R_{ns}}{GM_{ns}}$ Magnetic field $B_{CRSF} \leq 10^{12} \left(\frac{E_{cyc}}{11.6 \text{ keV}}\right) \text{G}$ Dipole magnetic moment $\mu \simeq \frac{1}{2} B_{CRSF} R_{ns}^{3}$

MASS ACCRETION

• Accretion of mass

• Accretion of angular momentum

Spin Evolution (Spin-up \leftrightarrow Spin-down) $\nu = 1/P_{\rm s}$

Name	B_{12}, G	$P_{ m s},~{ m s}$	$\dot{ u}_{ m sd}^{ m obs}$	$\dot{ u}_{ m sd}^{(0)}$	$\dot{ u}_{ m sd}^{(t)}$
OAO 1657-415	3.2	38	3.2	0.056	0.18
Vela X-1	2.6	283	0.2	0.0003	0.012
4U 1907+09	2.1	438	0.04	0.0002	0.008
4U 1538-522	1.8	529	0.06	0.0002	0.008
GX 301-2	4.0	683	0.1	0.003	0.02

The Problem (since 1973)

The **spin-down torque** applied to Long-Period X-ray Pulsars in HMXBs is a factor of 10 larger

than the **maximum possible spin-down torque** expected within

the conventional scenario of accretion from a non-magnetized stellar wind.

Conventional scenario:

• Magnetospheric radius:
$$r_{\rm m} \equiv r_{\rm A} = \left(\frac{\mu^2}{\dot{m}\sqrt{GM_{\rm ns}}}\right)^{2/7}; \quad \left[\dot{\mathfrak{m}} = \frac{L_{\rm X}R_{\rm ns}}{GM_{\rm ns}}\right]$$

• Spin-down torque: $|K_{\rm sd}(r_{\rm A})| \sim \begin{cases} |K_{\rm sd}^{(0)}| = \mu^2 \times \left[\frac{4\pi^2 k_{\rm t}}{GM_{\rm ns} P_{\rm s}^2}\right] \\ |K_{\rm sd}^{(t)}| = \mu^{8/7} \times \left[\frac{2\pi k_{\rm t} L_{\rm X}^{3/7} R_{\rm ns}^{3/7}}{(GM_{\rm ns})^{5/7} P_{\rm s}}\right] \end{cases}$

Torque definition

 $\mathbf{K} = \mathbf{F} \times \mathbf{r}$

Model task:

A sphere of the radius $r_{\rm m}$ is rotating in a viscose medium

Spin-down torque in general case (I of II steps)

$$|K_{\rm sd}(r_{\rm m})| = \nu_{\rm t} S_{\rm eff}(r_{\rm m}) \rho(r_{\rm m}) v_{\phi}(r_{\rm m})$$

Viscosity	$ u_{\mathrm{t}} = k_{\mathrm{t}} \ \ell_{\mathrm{t}} v_{\mathrm{t}}$
Effective Area	$S_{\mathrm{eff}} = 2\pi r_{\mathrm{m}} \ \mathbf{h}_{\mathrm{s}}(r_{\mathrm{m}})$
Thickness	$m{h}_{ m s}(r_{ m m}) = c_{ m s}^2(r_{ m m}) \left(rac{r_{ m m}^2}{GM_{ m ns}} ight)$
Density	$\rho(r_{\rm m}) = \frac{1}{c_{\rm s}^2(r_{\rm m})} \left(\frac{\mu^2}{2\pi r_{\rm m}^6}\right)$
ϕ -velocity	$v_{\phi} = r_{\mathrm{m}} \left[\omega_{\mathrm{s}} - \Omega(r_{\mathrm{m}}) \right]$

$$|K_{\rm sd}(r_{\rm m})| = [k_{\rm t} \, \ell_{\rm t} \, v_{\rm t}] \left[\frac{\mu^2}{r_{\rm m}^2} \, \frac{\omega_{\rm s}}{GM_{\rm ns}}\right] \left(1 - \frac{\Omega(r_{\rm m})}{\omega_{\rm s}}\right)$$

Spin-down torque in general case (II of II steps)

$$|\mathbf{K}_{\rm sd}(r_{\rm m})| = [k_{\rm t} \, \ell_{\rm t} \, v_{\rm t}] \left[\frac{\mu^2}{r_{\rm m}^2} \, \frac{\omega_{\rm s}}{GM_{\rm ns}}\right] \left(1 - \frac{\Omega(r_{\rm m})}{\omega_{\rm s}}\right)$$

$$\begin{split} \ell_{\rm t} &\leq r_{\rm m} \\ v_{\rm t} &\leq v_{\rm k}(r_{\rm m}) \\ \hline r_{\rm cor} &= \left(\frac{GM_{\rm ns}}{\omega_{\rm s}^2}\right)^{1/3} \end{split} | \left[\frac{\kappa_{\rm s}}{r_{\rm m}} \right]^{1/2} = \left[k_{\rm t} r_{\rm m} \left(\frac{GM_{\rm ns}}{r_{\rm m}}\right)^{1/2} \right] \left[\frac{\mu^2}{r_{\rm m}^2} \frac{\omega_{\rm s}}{GM_{\rm ns}} \right] \left(1 - \frac{\Omega(r_{\rm m})}{\omega_{\rm s}} \right) \\ &= k_{\rm t} \frac{\mu^2}{r_{\rm m}^{3/2}} \left[\frac{\omega_{\rm s}}{(GM_{\rm ns})^{1/2}} \right] \left(1 - \frac{\Omega(r_{\rm m})}{\omega_{\rm s}} \right) \end{split}$$

$$|\mathbf{K}_{\rm sd}(r_{\rm m})| = k_{\rm t} \frac{\mu^2}{(\mathbf{r}_{\rm m} \mathbf{r}_{\rm cor})^{3/2}} \left(1 - \frac{\Omega(r_{\rm m})}{\omega_{\rm s}}\right)$$

Ikhsanov N.R. & Beskrovnaya, N.G. 2012 Astronomy Reports, 56, 589 Ikhsanov N.R. & Finger, M.H. 2012 Astrophysical Journal, 753, 1 Correspondence principle is satisfied

$$|K_{\mathrm{sd}}(r_{\mathrm{m}})| \leq rac{\mu^2}{(r_{\mathrm{m}} r_{\mathrm{cor}})^{3/2}} \left(1 - rac{\Omega(r_{\mathrm{m}})}{\omega_{\mathrm{s}}}\right)$$

I. Accretion from a Turbulent-dominated Atmosphere

$$\Omega(r_{\rm m}) = 0$$

$$r_{\rm m} \equiv r_{\rm A} = \left(\frac{\mu^2}{\dot{\mathfrak{M}}\sqrt{2GM_{\rm ns}}}\right)^{2/7} |K_{\rm sd}^{(\rm t)}(r_{\rm A})| \leq \dot{\mathfrak{M}} \omega_{\rm s} r_{\rm A}^2$$

$$v_{\rm t}(r_{\rm A}) = v_{\rm k}(r_{\rm A})$$

II. Accretion from a free-falling material (Bondi accretion scenarios)

$$\Omega(r_{\rm m}) = 0$$

$$r_{\rm m} \equiv r_{\rm A}$$

$$|K_{\rm sd}^{(\rm ff)}(r_{\rm A})| = |K_{\rm sd}^{(\rm t)}(r_{\rm A})| \times \left(\frac{\omega_{\rm s} r_{\rm A}}{v_{\rm k}}\right) \leq \frac{\mu^2}{r_{\rm cor}^3}$$

$$v_{\rm t}(r_{\rm A}) = \omega_{\rm s} r_{\rm A}$$

Ikhsanov N.R. 2012, MNRAS, 424, L39

Evaluation of the Magnetospheric Radius from Spin Evolution

$$|K_{\rm sd}^{\rm max}| = \frac{k_{\rm t} \ \mu^2}{(r_{\rm m} \ r_{\rm cor})^{3/2}} \ge 2\pi \ I \ |\dot{\nu}_{\rm sd}|$$

$$\mathbf{r}_{\mathrm{m}} \leq \left(\frac{k_{\mathrm{t}} \ \boldsymbol{\mu}^{2}}{2\pi I |\dot{\boldsymbol{\nu}}_{\mathrm{sd}}|}\right)^{2/3} \left(\frac{\omega_{\mathrm{s}}^{2}}{GM_{\mathrm{ns}}}\right)^{1/3}$$

Name	B_{12}, G	$P_{\rm s},~{ m s}$	$\dot{\nu}_{\mathrm{sd}}$, 10 ⁻¹² Hz/s	$r_{ m m}, 10^8 { m cm}$	$r_{\rm A}, 10^8{ m cm}$	$r_{ m m}/r_{ m A}$
OAO 1657-415	3.2	38	3.2	1.4	6.8	0.2
Vela X-1	2.6	283	0.3	1.5	8.3	0.18
$4U 1907{+}09$	2.1	438	0.04	2.9	6	0.48
GX 301-2	4	683	0.1	1.9	5.5	0.34
X Persei	3.3	837	0.024	4.5	23	0.2

Constrains on Accretion Scenario in LPXPs

II. Quasi-spherical accretion can also be excluded

 $r_{
m m}^{
m (sp)}~\geq~r_{
m A}$

III. Magnetic accretion

- Accretion from a magnetized wind
- Formation of a non-Keplerian magnetized disk-like envelope (magnetic slab)

Some Historical Points of Magnetic Accretion Scenario

1959	Star formation in a magnetized medium	Mestel, L. 1959, MNRAS, 119, 223
1964 - 1965	Magnetic Collapse	Kardashev, N.S. 1965, Sov. Astron., 8, 643
1969	Fossil magnetic field in spherical flow onto a Neutron Star	Bisnovatyi-Kogan, G.S. Fridman, A.M. 1969, Sov. Astron. 13, 566
1971	Magnetic control of accretion onto a black hole flow deceleration at $R_{\rm sh}$	Shvartsman, V.F. 1971, SvA, 15, 377
1974 – 1976	Non-Keplerian magnetic disk around a black hole	Bisnovatyi-Kogan, G.S., Ruzmaikin, A.A. 1974, ApSS, 28, 45 Bisnovatyi-Kogan, G.S., Ruzmaikin, A.A. 1976, ApSS, 42, 401
2003 - 2006	Non-Keplerian magnetic disk simulations for a Black Hole (magnetically arrested disk)	Igumenshchev, I.V., Narayan, R., Abramowicz, M.A. 2003, ApJ, 592, 1042 Igumenshchev, I.V. 2006, ApJ, 649, 361
2012 - 2013	Non-Keplerian magnetic disk around a Neutron Star (magnetic slab)	This talk (+ 7 papers by Ikhsanov, N.R. et al.)

Accretion from a magnetized flow
$$\left(\beta_0 = \frac{\mathcal{E}_{\rm th}(R_{\rm G})}{\mathcal{E}_{\rm m}(R_{\rm G})} \sim 1\right)$$

r-Ram $\mathcal{E}_{\rm ram}(R_{\rm G}) = \rho_{\infty} v_{\rm rel}^2$
 ϕ -Ram $\mathcal{E}_{\rm rot}(R_{\rm G}) = \rho_{\infty} (\Omega_{\rm orb} R_{\rm G})^2$
Thermal $\mathcal{E}_{\rm th}(R_{\rm G}) = \rho_{\infty} c_{\rm s}^2 (R_{\rm G})$
Magnetic $\mathcal{E}_{\rm m}(R_{\rm G}) = \frac{B_{\rm f}^2(R_{\rm G})}{8\pi}$
 $\mathcal{E}_{\rm m}(r) = \mathcal{E}_{\rm rot}(R_{\rm G}) \left(\frac{R_{\rm G}}{r}\right)^{7/2}$

Shvartsman radius $\mathcal{E}_{m}(R_{sh}) = \mathcal{E}_{ram}(R_{sh})$

$$R_{\rm sh} = \beta^{-2/3} \left(\frac{c_{\rm s}}{v_{\rm rel}}\right)^{4/3} R_{\rm G}$$

Shvartsman, V.F. 1971, Soviet Astronomy, 15, 377

Igumenschev, Narayan & Abramowicz 2003, ApJ, 592, 1042

Magnetic accretion in X-ray pulsars

Basic condition:

$$R_{\rm sh} > \max\{r_{\rm A}, r_{\rm circ}\} \longrightarrow v_{\rm cr} < v_{\rm rel} < v_{\rm ma}$$

$$\mathcal{V}_{\mathrm{ma}} \simeq 465 \,\mathrm{km \, s^{-1}} \times \beta_0^{-1/5} \,\mu_{30}^{-6/35} \,m^{12/35} \, \hat{\mathfrak{m}}_{15}^{3/35} \, \left(\frac{c_{\mathrm{s}}(r_{\mathrm{G}})}{10 \,\mathrm{km \, s^{-1}}}\right)^{2/5}$$

$$v_{\rm Cr} \simeq 100 \,{\rm km \, s^{-1}} \times \beta_0^{1/7} \xi_{0.2}^{3/7} m^{3/7} P_{40}^{-3/7} \left(\frac{c_{\rm s}(r_{\rm G})}{10 \,{\rm km \, s^{-1}}}\right)^{-2/7}$$

Magnetic accretion onto a magnetized neutron star

$$c_{
m s}(r_{
m m}) > v_{\phi}(r_{
m m})$$

 $v_{\phi}(r_{
m m}) \ll v_{
m k}(r_{
m m})$
 $v_{
m A}(r_{
m m}) \sim c_{
m s}(r_{
m m})$

$$r_{
m ma}~\leq~r_{
m m}~\leq~r_{
m A}$$

Magnetospheric radius of a neutron star which accretes material from the non-Keplerian magnetic slab

$$\boldsymbol{r_{\mathrm{ma}}} = \left(\frac{c\,m_{\mathrm{p}}^2}{16\,\sqrt{2}\,e\,k_{\mathrm{B}}}\right)^{2/13} \frac{\alpha^{2/13}\,\mu^{6/13}\,(GM_{\mathrm{ns}})^{5/13}}{T_0^{2/13}\,L_{\mathrm{X}}^{4/13}\,R_{\mathrm{ns}}^{4/13}}$$

Ikhsanov N.R. & Beskrovnaya, N.G. 2012 Astronomy Reports, 56, 589 Ikhsanov N.R., Kim, V.Y., Beskrovnaya, N.G. & Pustil'nik, L.A. 2013 Astrophysics & Space Sci., first on-line

Spin-down rates of LPXPs $|\dot{\nu}_{sd}^{max}| \times 10^{-12} \, \text{Hz s}^{-1}$

Name	B_{12}, G	$P_{\rm s},~{ m s}$	$\left \left. \dot{ u}_{ m sd}^{ m obs} ight $	$\dot{ u}_{ m sd}^{(0)}$	$\dot{ u}_{ m sd}^{(t)}$	$\left \dot{ u}_{ m sd}^{(m)} ight $
OAO 1657-415	3.2	38	3.2	0.056	0.18	3.3
Vela X-1	2.6	283	0.2	0.0003	0.012	0.4
4U 1907+09	2.1	438	0.04	0.0002	0.008	0.2
4U 1538-522	1.8	529	0.06	0.0002	0.008	0.15
GX 301-2	4	683	0.1	0.003	0.02	0.7
X Persei	3.3	837	0.024	0.0001	0.0013	0.03

$$\begin{vmatrix} \dot{\nu}^{(0)} \end{vmatrix} = \frac{1}{2\pi I} \left[\frac{\mu^2}{r_{\rm cor}^3} \right]; \qquad \begin{vmatrix} \dot{\nu}^{(t)} \end{vmatrix} = \frac{1}{2\pi I} \left[\dot{\mathfrak{M}} \,\omega_{\rm s} R_{\rm A} \right]; \qquad \begin{vmatrix} \dot{\nu}^{(m)} \end{vmatrix} = \frac{1}{2\pi I} \left[\frac{\mu^2}{(r_{\rm ma} \, r_{\rm cor})^{3/2}} \right] \\ \left| \dot{\nu}_{\rm sd}^{(0)} \end{vmatrix} < \left| \dot{\nu}_{\rm sd}^{(t)} \right| \ll \left| \dot{\nu}_{\rm sd}^{\rm obs} \right| < \left| \dot{\nu}_{\rm sd}^{(m)} \right| \\ \end{vmatrix}$$

Magnetic Accretion onto a Neutron Star

- 1. Accretion from a magnetized wind $(\beta_0 \sim 1)$
- 2. Deceleration of the free-falling material at the Shvartsman radius $R_{\rm Sh}$
- 3. Formation of the non-Keplerian magnetic slab
- 4. Accumulation and diffusion of material into the NS's magnetic field
- 5. Stationary accretion at $\mathfrak{M}_{diff}(r_m) = L_X R_{ns}/GM_{ns}$

Accretion-powered Be/X-ray Pulsar SXP 1062

Name	$P_{\rm s},{ m s}$	$\log L_{\rm x}$	$E_{ m cyc}$	$\dot{\nu}$, Hz/s	$P_{\rm orb},{\rm d}$	Sp. type	d
SXP 1062	1070	35.8	—	-2.6×10^{-12}	656	B0 IIIe	$60{ m kpc}$

Magnetic field determination (Ikhsanov N.R. 2012, MNRAS, 424, L39)

Spin-down torque	Magnetic field	Magnetospheric radius
$\frac{\mu^2}{r_{\rm cor}^3} \ge 2\pi I \dot{\nu}_{\rm obs}$	$B_* \geq 6 imes 10^{14} \mathrm{G}$	$r_{\rm A}$ > $r_{\rm cor}$
$\dot{\mathfrak{M}} \omega_{\mathrm{s}} r_{\mathrm{A}}^2 \geq 2\pi I \dot{\nu}_{\mathrm{obs}}$	$B_* \geq 10^{15}{ m G}$	$r_{ m A}$ > $r_{ m cor}$
$\frac{\mu^2}{\left(r_{\rm ma} r_{\rm cor}\right)^{3/2}} \geq 2\pi I \dot{\nu}_{\rm obs}$	$B_* \geq 4 \times 10^{13} \mathrm{G}$	$r_{ m ma}~\sim~0.01r_{ m cor}$

Associated with a SNR of the age $\tau \sim (1-4) \times 10^4 \,\mathrm{yr}$

You	ung Isol	ated X-ra	y Puls	ar 1E 16	1348-505	<u>55</u>
Name	$P_{\rm s},{ m s}$	$L_{ m x}, { m erg/s}$	$E_{ m cyc}$	$ \dot{\nu} , \mathrm{Hz/s}$	Type	d, kpc
$1 \mathrm{E}1613$	24030	10^{34}	_	3×10^{-18}	Isolated	3.3

Magnetic field determination (Ikhsanov N.R., et al. 2013, ApSS, 346, 105)

Spin-down scenario	Magnetic field	Magnetospheric radius
Ejector (spin-powered pulsar)	$B_* \geq 4 \times 10^{18} \mathrm{G}$	$ r_{\rm A}\rangle > 100 r_{\rm cor}$
Keplerian fossil disk	$B_* \geq 10^{16}{ m G}$	$r_{\rm A} > 2.5 r_{\rm cor}$
Magnetic fossil slab	$B_* \geq 8 \times 10^{11} \mathrm{G}$	$r_{\rm ma} \sim 0.002 r_{\rm cor}$

$$B \geq 10^{12} \,\mathrm{G} \,\left(\frac{\tau}{2000 \,\mathrm{yr}}\right)^{-13/17} \times k_{\mathrm{m}}^{-13/17} \,\alpha_{\mathrm{B}}^{3/17} \,I_{45}^{13/17} \,m^{8/17} \,T_{6}^{3/17} \,\dot{\mathfrak{m}}_{14}^{-6/17}$$

Магнитная реверсная аккреция: параметры источников

Название	$P_{\rm s},$	$ \dot{\nu}_{\rm sd} ,$	$L_{\rm X},$	$B_{*},$	$r_{\rm cor},$	$r_{\mathrm{ma}},$	$a_{\mathrm{p}},$	$T_{\rm bb},$
	С	10 ^{−12} Гцс ^{−1}	10 ³⁴ эрг с ⁻¹	$10^{12} \Gamma c$	10 ⁸ см	10 ⁸ см	10 ⁵ см	кэВ
SGR 1627-41	2.6	2.8	0.25	3.9	3.2	1.2	0.9	0.5
$\operatorname{SGR}1900{+}14$	5.2	3.4	9.0	2.7	5.2	1.0	1.0	1.1
SGR 1806-20	7.6	13	16	12	6.6	1.7	0.8	1.4
SGR 0526-66	8.05	0.59	14	1.2	6.9	0.6	1.3	1.1
$1 \ge 1547.0-5408$	2.07	11	0.08	0.63	2.8	2.1	0.7	0.4
CXOU J174505.7-381031	3.83	4.4	6.0	2.3	4.2	1.0	1.0	0.98
PSR J1622-4950	4.33	0.9	0.063	1.5	4.6	1.2	0.9	0.33
XTE J1810-197	5.54	0.26	3.9	0.3	5.4	0.46	1.5	0.73
1E1048.1-5937	6.45	0.55	0.6	0.31	<mark>5.95</mark>	0.83	1.1	0.53
$1 ext{E} 2259 + 586$	6.98	0.01	2.2	0.024	6.3	0.17	2.4	0.49
CXOU J010043.1-721134	8.02	0.29	6.1	0.51	6.9	0.51	1.4	0.83
$4U0142{+}61$	8.69	0.03	11	0.11	7.26	0.21	2.2	0.77
CXO J164710.2-455216	10.61	0.006	0.3	0.011	8.3	0.22	2.1	0.32
1RXS J170849.0-400910	11.0	0.16	5.9	0.4	8.5	0.46	1.5	0.81
1E J1841-045	11.8	0.28	19	0.99	8.9	0.49	1.4	1.1

Gennady Bisnovatyi-Kogan

Alex Ruszmaikin