

Mísha Gorshteyn

October 7, 2013

Nucleon and Nuclear Structure-dependent Corrections to precision tests at low energy: Dispersing Uncertainties

STANDARD MODEL

OF ELEMENTARY PARTICLES AND FUNDAMENTAL INTERACTIONS

	FERMION	IS ^{ma} spi	tter constitu n = 1/2, 3/2	ients , 5/2,	BOSONS force carriers spin = 0, 1, 2,						
Leptons spin =1/2 Quarks spin =1/2				Unified Ele	Unified Electroweak spin = 1 Strong (color) spin =1						
Flavor	Mass GeV/c ²	Electric charge	Flavor	Approx. Mass GeV/c ²	Electric charge	Name	Mass GeV/c ²	Electric charge	Name	Mass GeV/c ²	Electric
𝒫L lightest neutrino*	(0-0.13)×10 ⁻⁹	0	U up	0.002	2/3	Y	0	0	q	0	0
e electron	0.000511	-1	d down	0.005	-1/3	photon			gluon	Ŭ	
𝒴 middle neutrino*	(0.009-0.13)×10 ⁻⁹	0	C charm	1.3	2/3	W	80.39	-1	Higgs	Boson sp	oin = 0
μ muon	0.106	-1	S strange	0.1	-1/3	W ⁺	80.39	+1	Name	Mass	Electric
\mathcal{V}_{H} heaviest neutrino*	(0.04-0.14)×10 ⁻⁹	0	t top	173	2/3	W bosons				GeV/c ²	Charge
τ tau	1.777	-1	b bottom	4.2	-1/3	Z boson	91.188	0	H^0, H^+	≈ 126	0, +1

Properties of the Interactions

The strengths of the interactions (forces) are shown relative to the strength of the electromagnetic force for two u quarks separated by the specified distances.

Property	Gravitational Interaction	Weak Interaction (Electro	Electromagnetic Interaction	Strong Interaction
Acts on:	Mass – Energy	Flavor	Electric Charge	Color Charge
Particles experiencing:	All	Quarks, Leptons	Electrically Charged	Quarks, Gluons
Particles mediating:	Graviton (not yet observed)	W+ W- Z ⁰	γ	Gluons
Strength at $\int 10^{-18} \mathrm{m}$	10 ⁻⁴¹	0.8	1	25
3×10 ⁻¹⁷ m	10 ⁻⁴¹	10 ⁻⁴	1	60

IT'S NOT THE END OF THE STORY... Standard Model is incomplete:

- SM turns out to be extremely fine-tuned (hierarchy problem)
- CP violation and matter-antimatter asymmetry (SM is symmetric w.r.t. matter-antimatter but the Universe is not)
- Cosmology: known matter is only small part of the Universe!

SEARCHES FOR NEW PHYSICS

• Collider searches:

accelerate known particles to produce heavy new particles

A typical p-p event in the CMS detector @ LHC

Higgs boson with mass ~ 126 GeV observed

No new particles (few 100's GeV) observed yet - quest continues

SEARCHES FOR NEW PHYSICS

• Astrophysics searches:

observe signals of new particles coming from the space

Fermi data reveal giant gamma-ray bubbles

No new particles observed yet < 300 GeV - quest contínues

5

SEARCHES FOR NEW PHYSICS

Low energy tests: deviations from SM predictions set constraint onto quantum fluctuations due to unknown heavy particles

LOW ENERGY PRECISION TESTS Parity-Violating Electron Scattering QWEAK, PVDIS, HAPPEX, PREX, GO@JLab; A4@Mainz; SAMPLE@MIT-Bates; E158@SLAC; Future: QWEAK @ Mainz, PVDIS (Hall C), Møller @ JLab Measurements of the PV asymmetry in elastic electron scattering to extract: **QWEAK** apparatus - weak mixing angle; - nucleon's strange FFs;

Probe the scale of New Physics - few TeV

LOW ENERGY PRECISION TESTS

Neutríno Oscíllatíon Experiments NuTeV, LSND, Daya Bay, MíníBooNE, ScíBooNE, NOvA, SNO, Super-K, OPERA, NEMO, MINOS, Ice Cube, Borexíno, ANTARES, Double Chooz

Measurements of neutrino oscillation parameters:

- masses;
- neutríno míxing angles;
 Dírac vs. Majorana neutríno

MiniBooNE detector

8

LOW ENERGY PRECISION TESTS

Lamb shift in muonic

atoms @ PSI

Precision tests of QED

Muoníc g-2 @ BNL, Fermílab

nEDM, eEDM -@PSI, ORNL, ILL,...

Dark Photon Search @ JLab, Maínz, ...

New Physics at Low Energies

THEORY SUPPORT TO LOW ENERGY TESTS

Leave to the experimentalists gauging the scale

Theorists: gauge the weights!

• Precision calculations of observables in the kinematics of atomic, nuclear and hadronic experiments are needed!

• Appropriate model-independent methods for strong interacting systems with reliable error estimation

• Requires understanding QCD in the non-perturbative regime

Proton Radius Puzzle

Proton Radius from Lamb Shift in Hydrogen Atom

Leading order: degenerate spectrum Radiative corrections: fine structure

Muonic vs Electronic Hydrogen

Hydrogen atom

SM: the only difference is the mass

Bohr radius $\frac{R_{\mu-H}}{R_{e-H}} = \frac{m_e}{m_{\mu}} \approx \frac{1}{200}$

 $\Delta E_{2P_{3/2}-2S_{1/2}}^{FS,\,e-H} = -8.1 \times 10^{-7} \, r_E^2 \,(\text{meV})$

muonic Hydrogen atom

 $\Delta E_{2P_{3/2}-2S_{1/2}}^{FS,\,\mu-H} = -5.2275(10) \, r_E^2 \,(\text{meV})$

The proton radii puzzle

SERGIO LEONE

3 ways to the proton radius

e-p scattering H precision laser spectroscopy μp laser spectroscopy

Pohl *et al.*, Nature 466, 213 (2010) Antognini *et al.*, Science 339, 417 (2013)

A. Antognini ECT*, Trento 01.08.2013 – p. 2

µ-H Lamb shift: pure QED corrections

#	Contribution	Pachucki	Nature	Borie-v6	Indelicato	Our choice	Ref.
		[11, 12]	[14]	[77]	[78]		
1	NR one-loop electron VP (eVP)	205.0074					
2	Rel. corr. (Breit-Pauli)	0.0169^{a}					
3	Rel. one-loop eVP		205.0282	205.0282	205.02821	205.02821	[78] Eq.(54)
19	Rel. RC to eVP, $\alpha(Z\alpha)^4$	(incl. in $#2$) ^b	-0.0041	-0.0041		-0.00208^{c}	[75, 76]
4	Two-loop eVP (Källén-Sabry)	1.5079	1.5081	1.5081	1.50810	1.50810	[78] Eq.(57)
5	One-loop eVP in 2-Coulomb lines $\alpha^2 (Z\alpha)^5$	0.1509	0.1509	0.1507	0.15102	0.15102	[78] Eq.(60)
7	eVP corr. to Källén-Sabry	0.0023	0.00223	0.00223	0.00215	0.00215	[78] Eq.(62), [85]
6	NR three-loop eVP	0.0053	0.00529	0.00529		0.00529	[85, 86]
9	Wichmann-Kroll, "1:3" LBL		-0.00103	-0.00102	-0.00102	-0.00102	[78] Eq.(64), [87]
10	Virtual Delbrück, "2:2" LBL		0.00135	0.00115		0.00115	[72, 87]
new	"3:1" LBL			-0.00102		-0.00102	[87]
20	μSE and μVP	-0.6677	-0.66770	-0.66788	-0.66761	-0.66761	[78] Eqs. $(72)+(76)$
11	Muon SE corr. to eVP $\alpha^2 (Z\alpha)^4$	-0.005(1)	-0.00500	-0.004924 ^d		-0.00254	[83] Eq.(29a) ^e
12	eVP loop in self-energy $\alpha^2 (Z\alpha)^4$	-0.001	-0.00150			f	[72, 88 - 90]
21	Higher-order corr. to μSE and μVP		-0.00169	-0.00171 g		-0.00171	[84] Eq.(177)
13	Mixed $eVP + \mu VP$		0.00007	0.00007		0.00007	[72]
new	eVP and μ VP in two Coulomb lines				0.00005	0.00005	[78] Eq.(78)
14	Hadronic VP $\alpha(Z\alpha)^4 m_r$	0.0113(3)	0.01077(38)	0.011(1)		0.01121(44)	[91–93]
15	Hadronic VP $\alpha(Z\alpha)^5 m_r$		0.000047			0.000047	[92, 93]
16	Rad corr. to hadronic VP		-0.000015			-0.000015	[92, 93]
17	Recoil corr.	0.0575	0.05750	0.0575	0.05747	0.05747	[78] Eq.(88)
22	Rel. RC $(Z\alpha)^5$	-0.045	-0.04497	-0.04497	-0.04497	-0.04497	[78] Eq.(88), [72]
23	Rel. RC $(Z\alpha)^6$	0.0003	0.00030		0.0002475	0.0002475	[78] Eq.(86)+Tab.II
new	Rad. (only eVP) RC $\alpha(Z\alpha)^5$					0.000136	[83] Eq.(64a)
24	Rad. RC $\alpha(Z\alpha)^n$ (proton SE)	-0.0099	-0.00960	-0.0100		-0.01080(100)	$[43]^h$ [72]
	Sum	206.0312	206.02915	206.02862		206.03339(109)	

µ-H Lamb shift: finite size + structure corrections

#	Contribution	Borie-v6	Karshenboim	Pachucki	Indelicato	Carroll	Our choice
		[77]	[76]	[11, 12]	[78]	[82]	
(Non-rel. finite-size	$-5.1973\langle r^2\rangle$	$-5.1975\langle r^2 \rangle$	$-5.1975\langle r^2 \rangle$			
	Rel. corr. to non-rel. finite size	$-0.0018\langle r^2 \rangle$		-0.0009 meV ^{a}			
	Rel. finite-size						
	exponential				$-5.1994\langle r^2\rangle$	$-5.2001\langle r^2\rangle$	$-5.1994\langle r^2 \rangle$
	Yukawa					$-5.2000\langle r^2\rangle$	
	Gaussian					$-5.2001\langle r^2\rangle$	
	Finite size corr. to one-loop eVP	$-0.0110\langle r^2 \rangle$	$-0.0110\langle r^2 \rangle$	$-0.010\langle r^2 \rangle$	$-0.0282\langle r^2 \rangle$		$-0.0282\langle r^2 \rangle$
	Finite size to one-loop eVP-it.	$-0.0165\langle r^2 \rangle$	$-0.0170\langle r^2 \rangle$	$-0.017\langle r^2 \rangle$	(incl. in -0.0282)		
	Finite-size corr. to Källén-Sabry	b			$-0.0002\langle r^2 \rangle$		$-0.0002\langle r^2 \rangle$
new	Finite size corr. to μ self-energy	$(0.00699)^{c}$			$0.0008 \langle r^2 \rangle$		$0.0009(3)\langle r^2\rangle^d$
(ΔE_{TPE} [46]						0.0332(20) meV
	elastic (third Zemach) ^{e}						
	measured $R^3_{(2)}$	$0.0365(18)\langle r^2 \rangle^{3/2}$					(incl. above)
	exponential			$0.0363 \langle r^2 \rangle^{3/2}$	$0.0353 \langle r^2 \rangle^{3/2} f$	$0.0353 \langle r^2 \rangle^{3/2}$	
	Yukawa					$0.0378\langle r^2\rangle^{3/2}$	
	Gaussian					$0.0323 \langle r^2 \rangle^{3/2}$	
25	inelastic (polarizability)	0.0129(5) meV [99]		0.012(2) meV			(incl. above)
new	Rad. corr. to TPE	$-0.00062\langle r^2\rangle$					$-0.00062\langle r^2 \rangle$
26	aVP corr to polarizability						0.00010 moV [02]
20	SE corr to polarizability						0.00019 meV [93]
10	Finite size to rel receil corr	$(0,013,m_{0}V)^{q}$		h			(incl in A F = -)
10	Finite-size to rei. recon corr.	$(0.013 \text{ meV})^{\circ}$			0.00001(10) 17		$\frac{(\text{Incl. III} \Delta E_{\text{TPE}})}{0.00001(10)} = V$
	nigner-order nnite-size corr.	-0.000123 meV			0.00001(10) meV	(· 1 1 ``	(: 1 1)
	$2P_{1/2}$ finite-size corr.	$-0.0000519\langle r^{2} \rangle$			(incl. above)	(incl. above)	(ıncl. above)

17

Proton radius from muonic hydrogen

• Measure ΔE_{2P-2S}^{exp} in μp with $u_r = 10^{-5} \leftrightarrow 0.5 \text{ GHz} = \Gamma/20$

₁8.4 me¥

Two photon exchange contribution to Lamb shift

Kinematics: 2 loop variables q^2 and v = (pq)/M

$$\mathcal{M} = e^4 \int \frac{d^4 q}{(2\pi)^4} \frac{1}{q^4} \bar{u}(k) \left[\gamma^{\nu} \frac{1}{\not{k} - \not{q} - m_l + i\epsilon} \gamma^{\mu} + \gamma^{\mu} \frac{1}{\not{k} + \not{q} - m_l + i\epsilon} \gamma^{\nu} \right] u(k) T_{\mu\nu}$$

Forward virtual Compton amplitude $T^{\mu\nu} = \frac{i}{8\pi M} \int d^4x e^{iqx} \langle p|T \, j^{\mu}(x) j^{\nu}(0)|p\rangle$ $= \left(-g^{\mu\nu} + \frac{q^{\mu}q^{\nu}}{q^2}\right) T_1(\nu, Q^2) + \frac{1}{M^2} (p - \frac{pq}{q^2}q)^{\mu} (p - \frac{pq}{q^2}q)^{\nu} T_2(\nu, Q^2)$

Lamb shift (nS-nP)

$$\Delta E = -\frac{\alpha^2}{2\pi m_l M_d} \phi_n^2(0) \int d^4q \frac{(q^2 + 2\nu^2)T_1(\nu, q^2) - (q^2 - \nu^2)T_2(\nu, q^2)}{q^4[(q^2/2m_l)^2 - \nu^2]}$$

Two photon exchange contribution to Lamb shift T_1, T_2 - the imaginary parts known (Optical theorem) $ImT_1(\nu, Q^2) = \frac{1}{4M}F_1(\nu, Q^2)$ $ImT_2(\nu, Q^2) = \frac{1}{4\nu}F_1(\nu, Q^2)$ Inelastic structure functions = data

Real parts - from forward dispersion relation $F_1(\nu \to \infty, q^2) \sim \nu^{1+\epsilon}$ - subtraction needed $F_2(\nu \to \infty, q^2) \sim \nu^{\epsilon}$ - no subtraction

 $\operatorname{Re}T_{1}(\nu,Q^{2}) = \overline{T}_{1}(0,Q^{2}) + T_{1}^{pole}(\nu,Q^{2}) + \frac{\nu^{2}}{2\pi M} \int_{\nu_{0}}^{\infty} \frac{d\nu'}{\nu(\nu'^{2}-\nu^{2})} F_{1}(\nu',Q^{2})$ $\operatorname{Re}T_{2}(\nu,Q^{2}) = T_{2}^{pole}(\nu,Q^{2}) + \frac{1}{2\pi} \int_{\nu_{0}}^{\infty} \frac{d\nu'}{\nu'^{2}-\nu^{2}} F_{2}(\nu',Q^{2})$

Proton Radíus Puzzle vs Standard Model 3 contributions $\Delta E = \Delta E^{subt} + \Delta E^{el} + \Delta E^{inel}$ 2 out of 3 are directly fixed by data "Elastic": elastic proton form factors $\Delta E^{el} = -\frac{\alpha^2 m_l}{M(M^2 - m_1^2)} \phi_n^2(0) \int_0^\infty \frac{dQ^2}{Q^2}$ $\times \left[\left(\frac{\gamma_2(\tau_p)}{\sqrt{\tau}} - \frac{\gamma_2(\tau_l)}{\sqrt{\tau}} \right) \frac{G_E^2 + \tau_p G_M^2}{\tau_p (1 + \tau_p)} - \left(\frac{\gamma_1(\tau_p)}{\sqrt{\tau}} - \frac{\gamma_1(\tau_l)}{\sqrt{\tau}} \right) G_M^2 \right]$ "Inelastic": real and virtual photoabsorption data $\Delta E^{inel} = -\frac{2\alpha^2}{m_I M} \phi_n^2(0) \int_0^\infty \frac{dQ^2}{Q^2} \int_{\nu}^\infty \frac{d\nu}{\nu}$ $\times \left[\tilde{\gamma}_1(\tau,\tau_l) F_1(\nu,Q^2) + \frac{M\nu}{Q^2} \tilde{\gamma}_2(\tau,\tau_l) F_2(\nu,Q^2) \right]$

Proton Radíus Puzzle vs Standard Model

3 groups evaluated the integrals - agreement

Pachucki 1996 : $\Delta E^{el} = -27.8 \,\mu\text{eV}, \ \Delta E^{inel} = -13.9 \,\mu\text{eV}$ Vanderhaeghen&Carlson 2011 : $\Delta E^{el} = -29.5(1.3) \,\mu\text{eV}, \ \Delta E^{inel} = -12.7(5) \,\mu\text{eV}$ MG, Llanes - Estrada, Szczepaniak 2013 : $\Delta E^{el} = -30.1(1.2) \,\mu\text{eV}, \ \Delta E^{inel} = -13.0(6) \,\mu\text{eV}$

Looking for 300 µeV

"Subtraction function" - generally unknown $\Delta E^{subt} = \frac{\alpha}{m_l} \phi_n^2(0) \int_0^\infty \frac{dQ^2}{Q^2} \frac{\gamma_1(\tau_l)}{\sqrt{\tau_l}} T_1(0, Q^2)$ Usually, identify $\bar{T}_1(0, Q^2) = \frac{Q^2}{e^2} \beta_M F_\beta(Q^2)$ $\beta_M = 3.5(6)10^{-4} \text{ fm}^3$ Not fully model-independent Can this subtraction function resolve the discrepancy?

Proton Radíus Puzzle vs New Physics harge radius from Lamb shift Possible Exotic explanations? New heavy particles are excluded by the $(g-2)_{\mu}$ $a_{\mu}(data) = (116\ 591\ 785\pm 51) \times 10^{-11}$

 $a_{\mu}(thy.) = (116\ 592\ 080\pm 63) \times 10^{-11}$ $\delta a_{\mu} = (295 \pm 81) \times 10^{-11}$

 $\Delta E_{Lamb}^{HEAVY} = 0.0044 \, meV$

 $\Delta E_{Lamb}^{missing} \approx 0.300 \, meV$

Viable explanation due to a light weakly-coupled boson • finely tuned (mass - MeV, coupling - 10-4) • breaks e- unversality (natural for Balar/tensor) $a_{\mu}^{Lepto} = \frac{1}{3} \frac{\lambda_{L\mu d}^{2}}{16\pi^{2}} \frac{m_{\mu}m_{d}}{S_{m_{L}}^{2O}} \left(\ln \frac{m_{L}^{2}}{m_{d}^{2}} - \frac{7}{5} \right) \in \int \delta a_{\mu}$ Batell, McKeen, Pospelov, PRL 2011 Ríslow, Carlson, PRD 2012 in μ -D, μ -He⁺ Trucker-Smith, Yavin, PRD 2011 spectroscopy!

Deuteron Radius from µ-D Lamb Shift

Deuteron radius from μd (preliminary)

Three transitions frequencies measured in µd
 2P fine and hyperfine contributions from theory Borie, Martynenko

 \Rightarrow Fit Lamb shift and 2S-HFS

 $\begin{array}{ll} \mu d: & \Delta E_{\rm LS}^{\rm exp} = 202.8759(34) \; {\rm meV} \; ({\rm prel.!}) \\ \mu {\rm p:} & \Delta E_{\rm LS}^{\rm exp} = 202.3706(23) \; {\rm meV} \end{array}$

Theory			QED		fin.	size		TPE	
$\mu \mathrm{p}$:	$\Delta E_{\rm LS}^{\rm th}$	=	206.0336(15)	-	5.227	5(10) $r_{ m p}^2$	+	0.0332(20) meV	
μ d:	$\Delta E_{\mathrm{LS}}^{\mathrm{th}}$	=	228.7972(15)	-	6.1094	4(10) $r_{ m d}^2$	+	1.6800(160) meV	Borie + Pachucki
		=		-		•••	+	1.6980(???) meV	Borie + Ji (arXiv:1307.6577)
		=	228.7711(15)	-	6.108	5(10) $r_{ m d}^2$	+	1.6800(160) meV	Martynenko+Pachucki
 Pachucki TPE term should be completed with: finite size of the pueleons (0.020 mo)()2 					ith:	- Pachuc	ki, Ji	et al., and Friar agre	e on the 2% level
- finite-size of the nucleons (0.029 meV)?						- Ongoing work of Carlson, Gorchtein and Vanderhaegen			

- neutron polarisabilities (0.040 meV?)? using inelastic data and dispersion relations.

• NO $R_{(2)}^3$ term (third Zemach term) in μd .

Priv. Com. Friar

Pachucki, PRL 106, 193007 (2011)

Exact cancellation for point-like nucleons between elastic (third Zemach) and part of the inelastic contributions

A. Antognini ECT*, Trento 01.08.2013 – p. 21

Polarizability Correction to Lamb Shift

Order $\mathcal{O}(\alpha^5)$ correction

TPE: elastic contribution to Lamb shift

TPE: quasielastic contributions to Lamb shift QE in the Plane-Wave Born Approximation $F_{1,2}^{d,QE}(\nu,Q^2) = \frac{1}{4\pi} \int d^3 \vec{k} \phi^2(\vec{k}) \left[F_{1,2}^p(\nu',Q^2) + F_{1,2}^n(\nu',Q^2)\right]$

Deuteron momentum distribution

 $S(\nu,Q^2) = \frac{1}{2} \int_{k_{min}}^{k_{max}} k dk \phi^2(k)$

Analytic parametrization of the Paris NN potential Lacombe et al. PL B101 (1981) 139

Works fine at substantial photon virtualities, not so fine at low Q^2 . But we just need to parametrize data - rescale by a function of Q^2 that will be obtained from a fit to all available data.

Quasielastic data

PWBA normalized to data 0.005 GeV² < Q² < 3 GeV²

Quasielastic data

The uncertainty to Lamb shift: from the error bands on this plot

Sample plots in MAMI and MESA/P2 kinematics show how sensitivity changes from 6° to 22° and 90° No wonder: forward Compton amplitude is sensitive to forward data PROTON'S WEAK CHARGE Dispersive YZ-Box correction

Weak Charge of the Proton

Elastic e-p scattering with polarized e⁻ beam

$$A^{PV} = \frac{\sigma_{\uparrow} - \sigma_{\downarrow}}{\sigma_{\uparrow} + \sigma_{\downarrow}} = -\frac{G_F Q^2}{4\sqrt{2}\pi\alpha_{em}} Q_W^p + \mathcal{O}(Q^4)$$

Effective e-q interaction

$$-\mathscr{L}^{eh} = -\frac{G_F}{\sqrt{2}} \sum_i \left[C_{1i} \,\overline{e} \,\gamma_\mu \gamma^5 e \,\overline{q}_i \,\gamma^\mu q_i + C_{2i} \,\overline{e} \,\gamma_\mu e \,\overline{q}_i \,\gamma^\mu \gamma^5 q_i \right]$$

Standard Model (tree-level)

 $Q_W^{p,tree} = -2(2C_{1u} + C_{1d}) = 1 - 4\sin^2\theta_W \approx 0.05$

Weak Charge of the Proton: EW corrections $G_{Ft} = \frac{G_{Ft}}{4\sqrt{2\pi}\alpha_{em}} P_{W} + \operatorname{Re}\delta_{kin}^{PV} + \operatorname{Re}\delta_{RC}^{PV}$ $\begin{aligned} & \text{Hadronic structure effects are under control} \\ & Q_W^p = (1 + \Delta_\rho + \Delta_e)(1 - 4\sin^2\hat{\theta}_W + \Delta_e^{4\sqrt{2\pi}\alpha} \mathbb{m}_{WW} + \Box_{ZZ} + \Box_{\gamma Z}) \end{aligned}$ W. J. Marciano and A. Sirlin, PRD 27, 552 (1983); 29,75 (1984); 31, 213 (1985). M.J. Ramsey-Musolf, PRC 60, 015501 (1999). $\delta_{RC}^{PV} = \bar{\delta}_{RC}^{PV} + \delta_{TBE}^{PV}$ Vacuum polarization: reconstructed from e^+e^- hadrons with dispersion relations Vac-pol 2Y-Box: kinematically suppressed Two-photon exchange WW,ZZ-Box: perturbative- calculable reliably YZ: for low energies (atomic PV experiments) WW, ZZ exchange cancellation between box and crossed - not true for -1 GeV energy any more! $\gamma - Z box + crossed$

Energy dependence of the YZ-Correction

MG & C.J. Horowitz, PRL102, 091806 (2009)

$$k^{\mu} = (E, \vec{k})$$

$$Q^{2} = -q_{\mu}q^{\mu} \ge 0$$

$$p^{\mu} = (M, \vec{0})$$

$$W^{2} = (p+q)^{2}$$

ae ae

Forward dispersion relation for $\Box_{\gamma Z} = g_V^e \Box_{\gamma Z_A} + g_A^e \Box_{\gamma Z_V}$

Possess different symmetry between box and crossed terms:

$$\operatorname{Re}\Box_{\gamma Z_{A}}(E) = \frac{2}{\pi} \int_{\nu_{0}}^{\infty} \frac{E' dE'}{E'^{2} - E^{2}} \operatorname{Im}\Box_{\gamma Z_{A}}(E')$$

$$\operatorname{Re}\Box_{\gamma Z_{V}}(E) = \frac{2E}{\pi} \int_{\nu_{0}}^{\infty} \frac{dE'}{E'^{2} - E^{2}} \operatorname{Im}\Box_{\gamma Z_{V}}(E')$$

Can quantify the energy dependence

 $\begin{aligned} \operatorname{Re}\Box_{\gamma Z_A}(0) \neq 0 \\ \operatorname{Re}\Box_{\gamma Z_V}(0) = 0 \end{aligned}$ APV result

Energy dependence of the YZ-Correction

Also the axial part can be evaluated through a DR - check the old Marcíano & Sírlín's calculation

Blunden et al., PRL 107 (2011) 081801

New SM prediction for the proton's weak charge $Q_W^p + \text{Re}\Box_{\gamma Z}(E = 1.165 \text{ GeV}) = 0.0767 \pm 0.0008 \pm 0.0020_{\gamma Z}$

To be compared to the previous prediction $Q_W^p = 0.0713 \pm 0.0008$ 4 σ (theory) effect was missed in the original QWEAK analysis; Theory uncertainty needs to be further reduced

Reducing Theory Uncertainty New data on PV DIS structure functions coming - PV DIS, SOLID @ JLab - will help constraining the theory uncertainty

43

Theory uncertainty for MESA/P2 kinematics

Energy dependence; Saturation of the box;

Steep energy dependence of the dispersion correction

A measurement at Mainz with 180MeV beam is planned - MESA/P2 $Q_W^p + \text{Re}\Box_{\gamma Z}(E = 0.180 \text{ GeV}) = 0.0726 \pm 0.0008 \pm 0.0003_{\gamma Z}$

SUMMARY

Proton radius puzzle:

- TPE correction unlikely to resolve the puzzle
- Check µ-He spectroscopy (PSI, Munich); µ-p scattering (MUSE);
- Radiative corrections to e-p scattering?

TPE correction to Lamb shift in μ -D:

- lack of forward data at low Q^2
- extend AI@Mainz measurement of elastic e-D scattering to quasielastic
- may need to take some further data at lower energy with P2
- further input from theory EFT calculation?

γ Z-box:

- at low energy smaller effect, big advantage for MESA/P2;
- to further reduce uncertainty include πN states explicitly
- at I GeV need some more input from exp. (PVDIS, VDM sum rule)
- MOLLER@JLab: Q^Pw could be measured as a by-product

Спасибо за внимание!

	$P_{33}(1232)$	$S_{11}(1535)$	$D_{13}(1520)$	$S_{11}(1665)$	$F_{15}(1680)$	$P_{11}(1440)$	$F_{37}(1950)$
y_R	$-1.0^{-0.1}_{+0.1}$	$-0.51^{-0.71}_{+0.35}$	$-0.77^{-0.125}_{+0.125}$	$-0.28^{-0.86}_{+0.45}$	$-0.27^{-0.12}_{+0.1}$	$-0.62^{-0.2}_{+0.19}$	-1^{-1}_{+1}

Uncertainties - from PDG helicity amplitudes values

 $\sigma_{tot}^{\gamma p} = \sum_{V=\rho,\omega,\phi} \underbrace{\frac{4\pi\alpha}{f_V^2}}_{VM} \underbrace{\text{Elastic Vp cross section - independent of V}}_{M \text{ decay constants }} \frac{4\pi}{f_V^2} = 0.4545, 0.04237, 0.05435 \quad (\rho,\omega,\phi)$

VDM sum rule:
$$\sigma_{tot}(\gamma p) = \sum_{V=\rho,\omega,\phi} \sqrt{16\pi \frac{4\pi\alpha}{f_V^2} \frac{d\sigma^{\gamma p \to V p}}{dt}} (t=0)$$

HERA: NPB' 02
 $139 \pm 4 \ (\mu b) \leftrightarrow$ ZEUS: Z.Phys.'95,'96, PLB'96
 $111 \pm 13 \ (\mu b)$ at W = 70 GeV

Generalized VDM - continuum contribution $\sigma_{tot}^{\gamma p}$ =

Measured

experimentally

$$\sum_{V=\rho,\omega,\phi} \frac{4\pi\alpha}{f_V^2} \sigma_{Vp} + \sigma_{Cp}$$

Isospin rotation of e.-m. data: background Rescale the background according to $\begin{bmatrix} \sigma^{\gamma^* p \to Zp} \\ \sigma^{\gamma^* p \to \gamma^* p} \end{bmatrix} = \frac{\frac{g_V^{I=1}}{e_{I=1}} + \frac{g_V^{I=0}}{e_{I=0}} \frac{\sigma^{\gamma^* p \to \omega p}}{\sigma^{\gamma^* p \to \rho p}} + \frac{g_V^s}{e_s} \frac{\sigma^{\gamma^* p \to \phi p}}{\sigma^{\gamma^* p \to \rho p}} + \frac{X'}{\sigma^{\gamma^* p \to \rho p}} \\ 1 + \frac{\sigma^{\gamma^* p \to \omega p}}{\sigma^{\gamma^* p \to \rho p}} + \frac{\sigma^{\gamma^* p \to \phi p}}{\sigma^{\gamma^* p \to \rho p}} + \frac{X'}{\sigma^{\gamma^* p \to \rho p}} \\ \text{VDM: identify X(X') with continuum} \\ \frac{\sigma^{\gamma^* p \to Vp}}{\sigma^{\gamma^* p \to \rho p}} = \frac{r_V}{r_\rho} \frac{m_V^4}{m_\rho^4} \frac{(m_\rho^2 + Q^2)^2}{(m_V^2 + Q^2)^2}$

Uncertainty estimate - from data!

$$\Delta \xi_{Z/\gamma}^{V,Model\,A} = \left[\left(\frac{\sigma^{\gamma^* \to V}}{\sigma^{\gamma^* \to \rho}} \right)^{exp} - \left(\frac{\sigma^{\gamma^* \to V}}{\sigma^{\gamma^* \to \rho}} \right)^{Model\,A} \right] \sigma^{\gamma^* \to V \to Z}$$

Continuum - 100% uncertainty

Correcting input in YZ-calculation Strong indication that S11 and D13 are misidentified in Bosted's fit!

PDG:	$D_{12}(1520):$	$A_{3/2}^p = 150(15) \mathrm{GeV}^{-1/2}, \ A_{1/2}^p = -24(9) \mathrm{GeV}^{-1/2}$
	$S_{11}(1535):$	$A_{3/2}^p = 0, \ A_{1/2}^p = 90(30) \mathrm{GeV}^{-1/2}$

Bosted: $D_{12}(1520)$: $S_{11}(1535)$:

$$\sqrt{(A_{3/2}^p)^2 + (A_{1/2}^p)^2} \sim 17 \,\text{GeV}^{-1/2}$$
$$A_{1/2}^p \sim 170 \,\text{GeV}^{-1/2}$$

Correcting the fit for more realistic strengths of these resonances would reduce the uncertainty due to isospin rotation of the resonances

50