Determination of Planck constant and the new SI

Savely G Karshenboim

Pulkovo observatory (ΓΑΟ) (St. Petersburg) and Max-Planck-Institut für Quantenoptik (Garching)

MAX-PLANCK-INSTITUTE OF QUANTUM OPTICS GARCHING

Outline

- structure of input and output of the adjustment
- Rydberg constant
- h

- quantum Hall standards
- quantum Josephson standards
- Watt-balance
- silicon crystale

Structure of the input data and output values

- Auxiliary data = exact + the most accurate data which are to be evaluated prior the adjustment: R_∞, m_e/m_p, atomic masses.
- α related data: h/m, hN_A ...
 - h related data: e, e/h, ...
 - The lines (\rightarrow) are equations: e.g., theoretical expressions for h/M, the Lamb shift, ...
 - Some data are measured, a lot are derived: m_p [kg], m_e [Mev/c²], ...

G is uncorrelated,...

Structure of the input data and output values

- Auxiliary data = exact + the most accurate data which are to be evaluated prior the adjustment: R_∞, m_e/m_p, atomic masses.
- α related data: h/m, hN_A ...
- h related data: e, e/h, N_A ...
 - The lines (\rightarrow) are equations: e.g., theoretical expressions for h/M, the Lamb shift, ...
 - Some data are measured, a lot are derived: m_p [kg], m_e [Mev/c²], ...
- G is uncorrelated; k, a_{μ} , ...

Example: multiplicative vs. additive: R_{∞} vs. α

equations:

1/2
$$\alpha^2 = R_\infty \frac{h}{m_e c}$$

- uncertainties:
 - $R_{\infty} \sim 10^{-11}$

•
$$\alpha \sim 10^{-9} - 10^{-10}$$

•
$$\alpha^2
ightarrow 10^{-4} imes 10^{-9}$$

$$c_1 R_\infty c + c_2 \alpha^2 R_\infty c = \nu$$

Rydberg constant

- hydrogen & deuterium spectroscopy
- electron-proton
 elastic scattering
- Lamb shift in muonic hydrogen

few parts in 10¹²

α block equations:

$$R_{\infty} = \frac{\alpha^2 m_e c}{2h}$$

- Δ =
- h/m_e

α block equations:

$R_{\infty} = \frac{\alpha^2 m_e c}{2h}$

- input data
 - α
 - h/m_e
 - h/m_p

equations:

$$R_{\infty} = \frac{\alpha^2 m_e c}{2h}$$

- m_e/m_p
- m_p in u
- m_{at} in u

- input data
 - Δ
 - h/m_e
 - h/m_p
 - h/m_{at}

.

Quantity	Symbol	Value	u_r
inverse fine structure constant	α^{-1}	137035090074(44)	$[3.2 \times 10^{-10}]$
molar Planck constant	$h \cdot N_A$	$3.9903127176(28) \times 10^{-10} \mathrm{Jsmol^{-1}}$	$[5.2 \times 10^{-10}]$ $[7.0 \times 10^{-10}]$
quantum of circulation	$h/(2m_e)$	$3.6369475520(24) imes10^{-4}~{ m m}^2{ m s}^{-1}$	$[6.5 \times 10^{-10}]$
Compton wavelength	$\lambda_{\rm C} = h/(m_e c)$	$2.4263102389(16) imes10^{-12}~{ m m}$	$[6.5 \times 10^{-10}]$
von Klitzing constant	$R_K = h/e^2$	$25812.8074434(84)\ \Omega$	$[3.2 \times 10^{-10}]$
muon-electron mass ratio	m_μ/m_e	206.7682843(52)	$[2.5 \times 10^{-8}]$

- QED vs. Penning trap: a_e
- recoil spectroscopy
 - h/m_{Rb}
 - h/m_{Cs}
- quantum Hall standard vs calculable capacitor: R_K

α block

- QED vs Penning trap: a_e
- recoil spectroscopy
 - h/m_{Rb}
 - h/m_{Cs}

below 1 part in 10⁹

Quantum Hall effect and a standard of resistance

- QED vs. Penning trap: a_e
- recoil spectroscopy
 - h/m_{Rb}
 - h/m_{Cs}
- quantum Hall standard vs calculable capacitor: R_K

Needs for a `theory' for QHE

Needs for a `theory' for QHE

h block

Quantity	Symbol	Value	u_r
Planck constant	h	$6.62606957(29) imes10^{-34}~{ m Js}$	$[4.4 \times 10^{-8}]$
elementary charge	e	$1.602176565(35) imes10^{-19}~{ m C}$	$[2.2 \times 10^{-8}]$
Avogadro constant	N_A	$6.02214129(27) imes 10^{23}\;{ m mol}^{-1}$	$[4.4 \times 10^{-8}]$
Faraday constant	$F = e \cdot N_A$	$96485.3365(21)\mathrm{Cmol^{-1}}$	$[2.2 \times 10^{-8}]$
electron charge to			
mass quotient	e/m_e	$1.758820088(39) imes10^{11}~{ m Ckg^{-1}}$	$[2.2 \times 10^{-8}]$
electron			
gyromagnetic ratio	$\gamma_e = 2\mu_e/\hbar$	$1.760859708(39) imes 10^{11} { m s^{-1} T^{-1}}$	$[2.2 \times 10^{-8}]$
electron mass	m_e	$9.10938291(40) imes10^{-31}~{ m kg}$	$[4.4 \times 10^{-8}]$
		$0.510998928(11)~{ m MeV}/c^2$	$[2.2 \times 10^{-8}]$
proton mass	m_p	$1.672621777(74) imes 10^{-27} \ { m kg}$	$[4.4 \times 10^{-8}]$
	-	$938.272046(21) \text{ MeV}/c^2$	$[2.2 \times 10^{-8}]$
Bohr magneton	$\mu_B = e\hbar/2m_e$	$927.400968(20) \times 10^{-26} \; \mathrm{J} \mathrm{T}^{-1}$	$[2.2 \times 10^{-8}]$
nuclear magneton	$\mu_N = e\hbar/2m_p$	$5.05078353(11) imes 10^{-27}~{ m JT^{-1}}$	$[2.2 \times 10^{-8}]$
Josephson constant	$K_J = 2e/h$	$483597.870(11) imes 10^9\mathrm{Hz}\mathrm{V}^{-1}$	$[2.2 \times 10^{-8}]$

h block

- watt ballance
- Avogadro constant from ehrhiched Si

Josephson effect and quantum volt stardard

watt-ballance

WB Principle (1): static phase / weighing mode

WB Principle (2): dynamic phase / velocity mode

WB Principle (3): combination of modes

- watt ballance
- Avogadro constant from ehrhiched Si

monocrystale $\sim 1 \text{ kg}$

isotopic composition

- ²⁸Si: 92%
- ²⁹Si: 5%
- ³⁰Si: 3%

monocrystale ~ 1 kg

isotopic composition

- ²⁸Si: 92% 99.985%
- ²⁹Si: 5%
- ³⁰Si: 3%

monocrystale $\sim 1 \text{ kg}$

isotopic composition

- ²⁸Si: 92% 99.985%
- ²⁹Si: 5%
- ³⁰Si: 3%

isotopic composition
²⁸Si: 92% 99.985%
²⁹Si: 5%
³⁰Si: 3%

- watt ballance
- Avogadro constant from ehrhiched Si
- problem remains

- watt ballance
- Avogadro constant from ehrhiched Si

Quantity	$u_r(2006)$	Δ	$\Delta/u_r(2006)$	$u_r(2010)$	$u_r(2010)/u_r(2006)$
R_{∞}	6.6×10^{-12}	1.1×10^{-12}	0.17	5.0×10^{-12}	0.76
m_e/m_p	4.3×10^{-10}	0.1×10^{-10}	0.03	4.1×10^{-10}	0.95
α	6.8×10^{-10}	44.2×10^{-10}	6.50	3.2×10^{-10}	0.47
h	5.0×10^{-8}	9.2×10^{-8}	1.84	4.4×10^{-8}	0.88
k	1.7×10^{-6}	-1.2×10^{-6}	-0.68	9.1×10^{-7}	0.53
G	1.0×10^{-4}	-0.7×10^{-4}	-0.66	1.2×10^{-4}	1.2

Quantity	$u_r(2006)$	Δ	$\Delta/u_r(2006)$	$u_r(2010)$	$u_r(2010)/u_r(2006)$
R_{∞}	6.6×10^{-12}	1.1×10^{-12}	0.17	5.0×10^{-12}	0.76
m_e/m_p	4.3×10^{-10}	0.1×10^{-10}	0.03	4.1×10^{-10}	0.95
lpha	6.8×10^{-10}	44.2×10^{-10}	6.50	3.2×10^{-10}	0.47
h	5.0×10^{-8}	9.2×10^{-8}	1.84	4.4×10^{-8}	0.88
k	1.7×10^{-6}	-1.2×10^{-6}	-0.68	9.1×10^{-7}	0.53
G	1.0×10^{-4}	-0.7×10^{-4}	-0.66	1.2×10^{-4}	(1.2)

Problems

- R_∞ & R_p
 m_e/m_p
- α
- h
- G G
- k
 a_μ

- + better accuracy
- + two methods
- + sensitivity to 5 loops
- 6-sigma jump

Problems

• $R_{\infty} & R_{p}$ • m_{e}/m_{p} • α • h• G• k• a_{μ}

- + natural-silicon discrepacy resolved
- + better accuracy for Avodagro
- new discrepancy

 $\begin{array}{l} \mathsf{NPL} \to \mathsf{NRC} \\ \mathsf{NIST-3} \end{array}$

Do we need a new definition? The most probably, yes, we do!

Do we need a new definition? The most probably, yes, we do!

Are we ready for the new definition?

+ natural-silicon discrepacy resolved

+ better accuracy for Avodagro

- new discrepancy

