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Introduction

Quantum electrodynamics in the external field approximation
(Furry picture of QED)

High-Z few-electron ions

N ≪ Z ,

where Z is the nuclear charge number and N is the number of
electrons.

To zeroth-order approximation:

(−i ~α ~∇+mβ + VC(r) )ψ (~r) = εψ (~r)

Interelectronic-interaction and QED effects:

Interelectronic interaction
Binding energy

∼ 1

Z
,

QED
Binding energy

∼ α(αZ)2 .

In uranium: Z = 92, αZ ≈ 0.7.
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Introduction

Relativistic many-electron atoms and ions

The interelectronic interaction is not small and must be taken into
account at the zero-order level:

VC → Veff = VC + Vscr ,

where Vscr describes approximately the electron-electron interaction
effects. Therefore, to zeroth order:

(−i ~α ~∇+mβ + Veff(r) )ψ (~r) = εψ (~r)

In higher orders, besides the interelectronic-interaction and QED ef-

fects, one must add the interaction with −Vscr.
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Green function

Standard (2N-time) QED Green function for an N-electron atom:

G(x′1, . . . x
′
N ;x1, . . . xN ) = 〈0|Tψ(x′1) · · ·ψ(x′N )ψ(xN ) · · ·ψ(x1)|0〉 ,

where x = (t,x), ψ(x) is the electron-positron field operator in the
Heisenberg representation, and ψ(x) = ψ†γ0.
In the interaction representation:

G(x′1, . . . x
′
N ;x1, . . . xN )

=
〈0|Tψin(x

′
1) · · ·ψin(x

′
N )ψin(xN ) · · ·ψin(x1) exp {−i

∫
d4z HI(z)}|0〉

〈0|T exp {−i
∫
d4z HI(z)}|0〉

,

where

HI(x) =
e

2
[ψin(x)γµ, ψin(x)]A

µ
in(x)−

δm

2
[ψin(x), ψin(x)]

is the interaction Hamiltonian.
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Two-time Green function

We introduce the two-time Green function:

G̃(t′, t) ≡ G(t′1 = t′2 = · · · t′N ≡ t′; t1 = t2 = · · · tN ≡ t)

♣♣♣♣♣♣♣♣♣♣♣
♣♣♣♣♣♣♣♣♣♣♣✫✪

✬✩

t′1 = t′2 = · · · = t′N ≡ t′ t1 = t2 = · · · = tN ≡ t

The Fourier transform:

G(E)δ(E − E′) =
1

2πi

1

N !

∫ ∞

−∞

dt dt′ exp (iE′t′ − iEt)G̃(t′, t) .

FFK, Oct 7-11, 2013 – p.6/26



Perturbation theory for quasidegenerate levels

We consider s degenerate or quasidegenerate states.
The projector on the unperturbed states:

P (0) =
s∑

k=1

P
(0)
k =

s∑

k=1

uku
†
k .

We project G(E) on the space Ω
(0)
s formed by the s unperturbed

states:

g(E) = P (0)G(E)P (0) .

We consider a contour Γ in the complex E plane:

r r r r r r

✛

Γ
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Perturbation theory for quasidegenerate levels

We introduce operators K and P by

K ≡ 1

2πi

∮

Γ

dE Eg(E) , P ≡ 1

2πi

∮

Γ

dE g(E) .

The energies and the wavefunctions are determined from the
equations:

Kvk = EkPvk , v†k′Pvk = δk′k

The solvability condition yields:

det (K − EP ) = 0 .
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Schrödinger-like equation for a relativistic atom

These equations can be transformed to the Schrödinger-like equation:

Hψk = Ekψk , ψ†
kψk′ = δkk′ ,

where H ≡ P− 1

2 K P− 1

2 and ψk ≡ P
1

2 vk. The energy levels are
determined from the equation:

det(H − E) = 0 .

The space of the quasidegenerate states can be extended to the

space Ω
(0)
+ that includes all positive-energy states whose energies are

smaller than the pair-creation threashold:

r r r rrrr

E(0) ∼ E(0) + 2mc2

✛

Γ

In this picture the photon spectra are omitted.
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Schrödinger-like equation for a relativistic atom

The operators K and P are constructed by perturbation theory:

K = K(0) +K(1) +K(2) + · · · ,
P = P (0) + P (1) + P (2) + · · · .

The operator H is

H = H(0) +H(1) +H(2) + · · · ,

where

H(0) = K(0) ,

H(1) = K(1) − 1

2
P (1)K(0) − 1

2
K(0)P (1) ,

H(2) = K(2) − 1

2
P (2)K(0) − 1

2
K(0)P (2) − 1

2
P (1)K(1) − 1

2
K(1)P (1)

+
3

8
P (1)P (1)K(0) +

3

8
K(0)P (1)P (1) +

1

4
P (1)K(0)P (1) .
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Interelectronic-interaction operator

One-photon exchange contribution to the Hamiltonian H:

�

In the space Ω
(0)
+ we get

hint =

(εi,εj ,εk,εl>0)∑

i 6=j,k 6=l

|ψiψj〉〈ψiψj |
1

2
[I(εi − εk) + I(εj − εl)]|ψkψl〉〈ψkψl| ,

where

I(ω) = e2αρασDρσ(ω) ,

αρ ≡ γ0γρ = (1,α), Dρσ(ω) is the photon propagator, and εi is the
one-electron Dirac energy.
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Dirac-Coulomb-Breit Hamiltonian

Taking hint in the Coulomb gauge at zero energy transfer
(ω = εi − εk = 0) and summing over atomic electrons leads to the
Dirac-Coulomb-Breit Hamiltonian:

H = Λ(+)
[∑

i

hDi +
∑

i<j

(V C
ij + V B

ij )
]
Λ(+) ,

where Λ(+) is the projector on the positive-energy states,

hDi = ~αi · ~pi +mβi + VC(ri) , VC(r) = −αZr ,

V C
ij = α

rij , V B
ij = −α

[
~αi · ~αj
rij + 1

2(
~∇i · ~αi)(~∇j · ~αj)rij

]
.

To account for the nonzero energy transfer, one should simply replace
V C
ij + V B

ij by the interelectronic-interaction operator hint derived above.

In the Feynman gauge, to get the Hamiltonian to the same accuracy,
one has to account for the higher-order photon exchange diagrams.
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Lamb shift operator for a relativistic atom

The QED contributions to the Hamiltonian H:

hQED = hSE + hVP

=

(εi,εk>0)∑

i,k

|ψi〉〈ψi|
[1
2
(ΣSE(εi) + ΣSE(εk)) + V VP

]
|ψk〉〈ψk| ,

where ΣSE(εi) and V VP are the renormalized self-energy (SE) and
vacuum-polarization (VP) operators, respectively.

Details of the two-time Green function method and the derivation of
these formulas can be found in [V.M. Shabaev, Phys. Rep., 2002; JPB, 1993].
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Lamb shift operator for a relativistic atom

The dominant part of the VP contribution is represented by the Uehling
potential:

VUehl(r) = −αZ 2α~2

3π

∞∫

0

dr′ 4πr′ρ(r′)

∞∫

1

dt (1 +
1

2t2
)

√
t2 − 1

t2

× [exp (−2m(c/~)|r − r′|t)− exp (−2m(c/~)(r + r′)t)]

4mrt
,

where α is the fine structure constant and |e|Zρ(r) is the density of the
nuclear charge distribution (

∫
ρ(r)dr = 1).

Evaluation of the remaining Wichmann-Kroll potential is a much more
difficult problem [G. Soff and P.J. Mohr, PRA, 1988; N.L. Manakov et al., JETP,

1989]. To a good accuracy, it can be calculated with the help of the
approximate formulas derived in [A.G. Fainshten et al., JPB, 1991].
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Model self-energy operator for a relativistic atom

Let us now consider the SE operator:

hSE =

(εi,εk>0)∑

i,k

|ψi〉〈ψi|
1

2
[ΣSE(εi) + ΣSE(εk)]|ψk〉〈ψk| .

We represent hSE as a sum of local and nonlocal parts. The local part
is given by

V SE
loc =

∑

κ

Aκ exp (−r/λC)Pκ ,

where Pκ is the projector on the states with the given value of
κ = (−1)j+l+1/2(j + 1/2), the constant Aκ is chosen to reproduce the
SE shift for the lowest energy level at the given κ in the corresponding
H-like ion, and λC = ~/(mc).
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Model self-energy operator for a relativistic atom

We restrict the active space of the remaining SE operator, hSE − V SE
loc ,

to to the basis functions {φi(r)}ni=1 which, having the same angular
parts as the H-like functions {ψi(r)}ni=1, are localized at smaller
distances. With these functions, we approximate the one-electron SE
operator as follows

hSE = V SE
loc +

n∑

i,k=1

|φi〉Bik〈φk| ,

where the matrix Bik has to be determined to reproduce the diagonal
and non-diagonal SE corrections with the H-like wave functions. This
leads to the equations

n∑

j,l=1

〈ψi|φj〉Bjl〈φl|ψk〉

= 〈ψi|
[1
2
(Σ(εi) + Σ(εk))− V SE

loc

]
|ψk〉 .
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Model self-energy operator for a relativistic atom

Now let us consider the choice of the functions {φi(r)}ni=1. We
construct them using the H-like wave functions multiplied with the
factor

ρl(r) = exp (−2αZ(r/λC)/(1 + l)),

where l = |κ+ 1/2| − 1/2 is the orbital angular momentum of the state
under consideration.
In what follows, we restrict the basis functions by ns, np1/2, np3/2,
nd3/2, and nd5/2 states with the principal quantum number n ≤ 3 for
the s states and n ≤ 4 for the p and d states, and put

φi(r) =
1

2
(I − (−1)siβ)ρli(r)ψi(r) ,

where I is the identity matrix, β is the standard Dirac matrix, the index
si = ni − li enumerates the positive energy states at the given κ, and
ni is the principal quantum number.
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Model self-energy operator for a relativistic atom

Thus, the model SE operator is given by

hSE = V SE
loc +

1

4

∑

i,k

∑

j,l

(I − (−1)siβ)ρli(r)|ψi〉

×((Dt)−1)ij〈ψj |
[1
2
(Σ(εj) + Σ(εl))− V SE

loc

]
|ψl〉

×(D−1)lk〈ψk|ρlk(r)(I − (−1)skβ),

where the summations run over ns states with the principal quantum
number n ≤ 3 and over np1/2, np3/2, nd3/2, and nd5/2 states with
n ≤ 4,

ρli(r) = exp (−2αZ(r/λC)/(1 + li)) ,

Dik =
1

2
〈ψi|(I − (−1)siβ)ρli(r)|ψk〉 ,

and si = ni − li.
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Self-energy matrix elements with H-like wave functions

To complete the construction of the model SE operator, one needs to
evaluate the matrix elements Σik ≡ 〈ψi| 12 (Σ(εi) + Σ(εk))|ψk〉 with the
H-like wave functions. To perform such calculations we used the
method described in [V.A. Yerokhin and V.M. Shabaev, PRA, 1999; V.A. Yerokhin,
K. Pachucki, and V.M. Shabaev, PRA, 2005]. The results of the calculations are
conveniently expressed in terms of the function Fik(αZ) defined by

Σik ≡ 〈ψi|
1

2
[Σ(εi) + Σ(εk)]|ψk〉 =

α

π

(αZ)4

(nink)3/2
Fik(αZ)mc

2 ,

where ni and nk are the principal quantum numbers of the i and k
states, respectively. For the diagonal matrix elements, these results
are in a good agreement with the calculations performed in [P.J. Mohr,
PRA, 1992; P.J. Mohr and Y.-K. Kim, PRA, 1992; T. Beier, P.J. Mohr, H. Persson, and
G. Soff, PRA, 1998].
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Self-energy matrix elements with H-like wave functions

Self-energy matrix elements Fik(αZ), defined by

Σik ≡ 〈ψi| 12 [Σ(εi) + Σ(εk)]|ψk〉 = α
π

(αZ)4

(nink)3/2
Fik(αZ)mc

2, with H-like

wave functions for extended nuclei.

Z F1s 1s F2s 2s F3s 3s F1s 2s F1s 3s F2s 3s

10 4.6542 4.8944 4.9524 4.7961 4.8145 4.9325

30 2.5518 2.8386 2.8937 2.7084 2.7235 2.8748

60 1.6820 2.0923 2.1410 1.8795 1.8886 2.1242

90 1.4721 2.1431 2.1702 1.7615 1.7607 2.1625

120 1.7335 3.1256 3.0295 2.2753 2.2294 3.1125
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Calculations with the model SE operator

To demonstrate the efficiency of the method, we applied it to
calculations of the Lamb shifts in neutral alkali metals, Cu-like ions,
superheavy atoms, and Li-like ions.
Ab initio calculations of the Lamb shift in alkali metals were performed
[J. Sapirstein and K.T. Cheng, PRA, 2002] in the potential U(r):

V (r) = −αZeff(r)

r
,

where

Zeff(r) = Znuc(r)− r

∫ ∞

0

dr′
1

r>
ρt(r

′) + xα

[ 81

32π2
rρt

]1/3

and ρt = ρv + ρc is total (valence plus core) electron charge density.
The choice xα = 0 corresponds to the Dirac-Hartree potential,
xα = 2/3 gives the Kohn-Sham potential, and xα = 1 is the
Dirac-Slater potential.
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Self energy in neutral alkali metals

Self-energy function F (αZ), defined by ∆ESE = α
π

(αZ)4

n3 F (αZ)mc2, for
neutral alkali metals in different potentials.

Atom Method xα = 0 xα = 1/3 xα = 2/3 xα = 1

Na 3s1/2 〈v|V SE
loc |v〉 0.166 0.163 0.176 0.214

〈v|HSE|v〉 0.170 0.168 0.183 0.224
Exacta 0.169 0.167 0.181 0.223

Rb 5s1/2 〈v|V SE
loc |v〉 0.0187 0.0193 0.0230 0.0320

〈v|HSE|v〉 0.0229 0.0237 0.0284 0.0397
Exacta 0.0228 0.0236 0.0283 0.0396

Fr 7s1/2 〈v|V SE
loc |v〉 0.0047 0.0052 0.0067 0.0102

〈v|HSE|v〉 0.0069 0.0076 0.0099 0.0151
Exacta 0.0068 0.0075 0.0098 0.0150

aJ. Sapirstein and K.T. Cheng, PRA, 2002.
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Self energy in Cu-like ions

Self-energy contribution to the 4s− 4p1/2 and 4s− 4p3/2 transition
energies in Cu-like ions, in eV.

Ion Transition Model SE operator Exacta

Yb41+ 4s− 4p1/2 -1.29 -1.28
4s− 4p3/2 -1.21 -1.21

4p1/2 − 4d3/2 -0.10 -0.11
4p3/2 − 4d3/2 -0.18 -0.18
4p3/2 − 4d5/2 -0.14 -0.14

U63+ 4s− 4p1/2 -4.24 -4.24
4s− 4p3/2 -4.32 -4.33

4p1/2 − 4d3/2 -0.87 -0.88
4p3/2 − 4d3/2 -0.79 -0.79
4p3/2 − 4d5/2 -0.63 -0.65

aJ. Sapirstein and K.T. Cheng, PRA, 2002.
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Self energy in superheavy atoms

Self-energy contribution to the binding energy of the valence electrons
in Rg and Cn, in eV. In this work, the perturbation theory (PT) value is
obtained by averaging the model SE potential with the Dirac-Fock
wave function of the valence electron, while the DF value is obtained
by including this potential into the DF equations.

Atom Valence Method This work I. Goidenko, Other
electron EPJD, 2009 works

Rg 7s PT -0.088 -0.089 -0.087a

DF -0.105 -0.102
Welton meth. -0.084b

Local SE pot. -0.089c

Cn 7s PT -0.101 -0.103
DF -0.105 -0.110

aL. Labzowsky et al., PRA, 1999; bP. Indelicato et al., EPJD, 2007;
cC. Thierfelder and P. Schwerdtfeger, PRA, 2010.
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Screened self energy in Li-like ions

Screened self energy for the 2s, 2p1/2, and 2p3/2 states of Li-like ions,
in eV. The Kohn-Sham (KS) and Dirac-Fock (DF) results are obtained
using the model SE potential approach.

Z State KS DF PTa PTb

20 2s -0.047 -0.045 -0.044 -0.046
2p1/2 -0.009 -0.008 -0.008 -0.008
2p3/2 -0.012 -0.011 -0.013 -0.013

50 2s -0.50 -0.49 -0.48
2p1/2 -0.13 -0.12 -0.12
2p3/2 -0.14 -0.14 -0.16

83 2s -2.35 -2.25 -2.32 -2.26
2p1/2 -0.97 -0.98 -1.07 -1.07
2p3/2 -0.65 -0.61 -0.75 -0.76

aY.S. Kozhedub et al., PRA, 2010; bJ. Sapirstein and K.T. Cheng, PRA, 2011.
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Conclusion

• Schrödinger-like equation for a relativistic many-electron atom can
be derived from the first principles of QED by the two-time Green
function method.

• The QED contribution can be approximated by a model operator,
which provides a very simple and efficient tool for evaluation of
the Lamb shifts in many-electron atoms and ions [V. M. Shabaev,
I. I. Tupitsyn, and V. A. Yerokhin, Phys. Rev. A 88, 012513 (2013)].
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