QED calculations of H₂ molecule

Vladimir A. Yerokhin St. Petersburg State Polytechnical University

in collaboration with

Krzysztof Pachucki Warsaw University

FFK 2013, Pulkovo, St. Petersburg, October 7-11

Do we need QED for H_2 ?

Dissociation energy of H₂

Tear	Experiment	Theory	Δ
926	$35.2(19) \times 10^{3} a$		$-0.9 imes10^3$
927		$24 \times 10^{3} a_{,b}$	-12×10^{3}
927	$35.3 \times 10^{3} a$		-0.8×10^3
928		$28.3 \times 10^{3} a, b$	-7.8×10^{3}
929	$36.19(32) \times 10^{3} a$		0.07×10^{3}
931		$30.4 \times 10^{3} a, b$	-5.7×10^{3}
933		36 104(105) a	-14
934	36 100(40)		-18
935	36 116(6)		$^{-2}$
960		36 113.1 °	-5.0
961	36 113.05(30)		-5.02
962		36 091	-27
964		36 114.2	-3.9
966		36 117.5	-0.6
968		36 117.4	-0.7
969	36117.5(20) ^d		-0.6
969	36 118.3 ^e		0.2
970	36 118.6(5)		0.5
972		36 117.8	-0.3
975		36 118.0	-0.1
978		36 117.92	-0.15
983		36 118.01	-0.06
986		36 118.088	0.018
987		36 118.074	0.004
992	36 118.11(8)		0.04
993	36 118.06(4)		-0.01
993		36 118.049	-0.021
993		36 118.060	-0.010
995		36 118.069	-0.001
.004	36 118.062(10)		-0.008
.009	36 118.06962(37) ^d		0
.009		36 118.0695(10)	-0.0001
	QED :	-0.1964	(9)

٦

2

Source: Faraday Discuss. 150, 51 (2011)

An order of magnitude in precision every 14 years

Theory: J. Chem. Theor. Comput. 5, 3039 (2009)

H₂: accurate test of QED in molecules

Measurement of the fundamental ground tone vibration (rotationless vibrational splitting) in H_2 , HD, and D_2 [Amsterdam, W. Ubachs group, 2013]

Accurate test of QED in chemically bound systems

FIG. 3 (color online). (a) Current and previously measured values for the fundamental ground tone vibration in H₂ [19,20,23]. The dashed horizontal line represents the value [and the shaded (yellow) area represents $\pm 1\sigma$ uncertainties] from the full *ab initio* calculations including QED effects. (b), (c) represent measured values for the ground tone of HD and D₂, respectively, along with the full *ab initio* calculations. These are compared with the results of Rich *et al.* [24] and McKellar and Oka [25] for HD and D₂, respectively.

QED (H₂): -0.02145(9) cm⁻¹ 100 times larger than the experimental error Theory: K. Pachucki, J. Komasa 2013

Spectroscopy of H2: bounds on fifth forces

$$V(r_{12})=lpha_G e^{-r_{12}/\lambda}$$

- Search for an additional interaction between particles at a given length scale $\lambda \leftrightarrow$ search for deviation from the Newtonian law of gravity.
 - Gravitational experiments: 10^{-2} m < λ < 10^{6} km
 - Casimir force experiments: 10^{-7} m < λ < 10^{-4} m
 - Spectroscopy of H₂: chemical bond distance length scale

PRL 110, 193601 (2013): H_2 constraint $\alpha_G < 6 \times 10^{-8} \text{ eV} \cdot A$ for $\lambda \gg R = 0.74 \text{ A}$

QED: from atoms to simple molecules

Energy levels of light molecules: QED theory

Perturbative expansion in two parameters $\alpha \approx 1/137$ is the fine-structure constant $\beta = m/M$ is the electron-to-nucleus mass ratio $\approx 10^{-3}$ for H₂

Nonrelativistic theory

Schroedinger equation:

$$[H - E] |\phi\rangle = 0$$

$$H = H_{\rm el} + H_{\rm n}$$

$$H_{\rm el} = -\sum_{a} \frac{\nabla_a^2}{2 m_{\rm e}} + V$$

Diatomic molecules, coordinate system origin at the bond midpoint:

$$H_{\rm n} = -\frac{\nabla_R^2}{2\,\mu_{\rm n}} - \frac{\nabla_{\rm el}^2}{2\,\mu_{\rm n}} - \left(\frac{1}{M_B} - \frac{1}{M_A}\right) \vec{\nabla}_R \cdot \vec{\nabla}_{\rm el}$$
$$\vec{R} = \vec{R}_A - \vec{R}_B \qquad \qquad \frac{1}{\mu_{\rm n}} = \frac{1}{M_B} + \frac{1}{M_A} \qquad \qquad \vec{\nabla}_{\rm el} \equiv \frac{1}{2} \sum_a \vec{\nabla}_a$$

Adiabatic approximation

 $\phi_{\rm a}(\vec{r},\vec{R}) = \phi_{\rm el}(\vec{r}) \; \chi(\vec{R})$

Born-Oppenheimer energy:

$$\left[H_{\rm el} - \mathcal{E}_{\rm el}(\vec{R})\right] |\phi_{\rm el}\rangle = 0$$

Adiabatic approximation

 $\phi_{\rm a}(\vec{r},\vec{R}) = \phi_{\rm el}(\vec{r}) \ \chi(\vec{R})$

Born-Oppenheimer energy:

$$\left[H_{\rm el} - \mathcal{E}_{\rm el}(\vec{R})\right] |\phi_{\rm el}\rangle = 0$$

Adiabatic correction:

$$\left[H_{\rm n} + \mathcal{E}_{\rm el}(\vec{R}) + \mathcal{E}_{\rm a}(\vec{R}) - E_{\rm a}\right] |\chi\rangle = 0$$

 $\mathcal{E}_{\rm a}(\vec{R}) = \left\langle \phi_{\rm el} | H_{\rm n} | \phi_{\rm el} \right\rangle_{\rm el}$

 $\left[-\frac{1}{2R^2}\frac{\partial}{\partial R}\frac{R^2}{\mu_{\rm n}}\frac{\partial}{\partial R} + \frac{J(J+1)}{2\mu_{\rm n}R^2} + \mathcal{E}_{\rm el}(R) + \mathcal{E}_{\rm a}(R)\right]\chi_J(R) = E_{\rm a}\chi_J(R)$

Beyond the adiabatic approximation

[K. Pachucki and J. Komasa, J. Chem. Phys. 130 164113 (2009)]

Radial nonadiabatic Schroedinger equation:

$$\left[-\frac{1}{R^2}\frac{\partial}{\partial R}\frac{R^2}{2\,\mu_{\parallel}(R)}\frac{\partial}{\partial R}+\frac{J(J+1)}{2\,\mu_{\perp}(R)R^2}+\mathcal{Y}(R)\right]\chi_J(R)=E\,\chi_J(R)$$

where

$$\mathcal{Y}(R) = \mathcal{E}_{\mathrm{el}}(R) + \mathcal{E}_{\mathrm{a}}(R) + \delta \mathcal{E}_{\mathrm{na}}(R)$$

is a nonadiabatic potential energy function

Effective R-dependent nuclear masses:

$$\frac{1}{2\,\mu_{\parallel}(R)} \equiv \frac{1}{2\,\mu_{\rm n}} + \mathcal{W}_{\parallel}(R) \qquad \qquad \frac{1}{2\,\mu_{\perp}(R)} \equiv \frac{1}{2\,\mu_{\rm n}} + \mathcal{W}_{\perp}(R)$$
$$\mathcal{W}_{\parallel}(R) = \frac{1}{\mu_{\rm n}^2} \left\langle \vec{n} \cdot \vec{\nabla}_R \phi_{\rm el} \middle| \frac{1}{(\mathcal{E}_{\rm el} - H_{\rm el})'} \middle| \vec{n} \cdot \vec{\nabla}_R \phi_{\rm el} \right\rangle_{\rm el}$$
$$\mathcal{W}_{\perp}(R) = \frac{1}{\mu_{\rm n}^2} \frac{(\delta^{ij} - n^i n^j)}{2} \left\langle \nabla_R^i \phi_{\rm el} \middle| \frac{1}{(\mathcal{E}_{\rm el} - H_{\rm el})'} \middle| \nabla_R^j \phi_{\rm el} \right\rangle_{\rm el}$$

Effective nuclear masses in H_2

Relativistic correction ($\sim \alpha^2$)

Expectation value of the Breit-Pauli Hamiltonian on the nonrelativistic wave function:

$$\begin{aligned} \mathcal{E}_{\text{REL}} &= \sum_{a} \left[-\frac{1}{8} \left\langle \Psi \left| p_{a}^{4} \right| \Psi \right\rangle + \sum_{l} \frac{Z_{l}\pi}{2} \left\langle \Psi \left| \delta(\vec{r}_{al}) \right| \Psi \right\rangle \right] \\ &+ \sum_{a > b} \left[\pi \left\langle \Psi \left| \delta(\vec{r}_{ab}) \right| \Psi \right\rangle + \frac{1}{2} \left\langle \Psi \left| \vec{p}_{a} \frac{1}{r_{ab}} \vec{p}_{b} + \vec{p}_{a} \cdot \vec{r}_{ab} \frac{1}{r_{ab}^{3}} \vec{r}_{ab} \cdot \vec{p}_{b} \right| \Psi \right\rangle \right] \\ &+ \frac{2\pi}{3} \sum_{l} Z_{l} \frac{r_{\text{ch}}^{2}(l)}{\chi_{e}^{2}} \left\langle \Psi \left| \sum_{a} \delta(\vec{r}_{al}) \right| \Psi \right\rangle \end{aligned}$$

Leading QED correction ($\sim \alpha^3$)

Expectation values on non-local and singular operators need to be calculated

Bethe logarithm:

$$\ln k_{0} = \frac{\langle \phi_{\mathrm{el}} | \vec{\nabla} (H_{0} - \mathcal{E}_{0}) \ln [2 (H_{0} - \mathcal{E}_{0})] \vec{\nabla} | \phi_{\mathrm{el}} \rangle}{\langle \phi_{\mathrm{el}} | \vec{\nabla} (H_{0} - \mathcal{E}_{0}) \vec{\nabla} | \phi_{\mathrm{el}} \rangle}$$

Regularized $1/r_{12}^3$ operator:

$$\left\langle \phi_{\mathrm{el}} | P(r_{12}^{-3}) | \phi_{\mathrm{el}} \right\rangle = \lim_{a \to 0} \left\langle \phi_{\mathrm{el}} | \theta(r_{12} - a) r_{12}^{-3} + 4\pi \left(\gamma + \ln a \right) \delta(\mathbf{r}_{12}) | \phi_{\mathrm{el}} \right\rangle$$

Higher-order QED correction ($\sim \alpha^4$)

- An open challenge.
- Very difficult to calculate, known only for H, He and H2+.
- Involves even more singular operators.
- Choice of the basis for representation of the wave function is important.

Wave function

Schroedinger equation is solved by variational principle.

Wave function is represented by a linear combination of basis functions

$$\phi_{\rm el} = \sum_{k=1}^{K} c_k \, (1 + \hat{P}_{12}) (1 \pm \hat{\imath}) \, \psi_k(\mathbf{r}_1, \mathbf{r}_2)$$

Choice of the basis functions:

• Explicitly correlated basis set. Includes explicitly all interparticle distances \vec{r}_{1A} \vec{r}_{2A} \vec{r}_{12} \vec{r}_{2A} \vec{r}_{2B}

Cusp condition fulfilled?

$$\left(rac{1}{\Psi} rac{\partial \Psi}{\partial r_{12}}
ight)_{r_{12}=0} = \operatorname{const} + O(r_{12})$$

Explicitly correlated basis sets

Explicitly correlated Gaussians (ECG)

 $\psi_k = \exp\left(-\alpha r_{1A}^2 - \beta r_{1B}^2 - \gamma r_{2A}^2 - \delta r_{2B}^2 - \lambda r_{12}^2\right)$

Positive: fast, stable, all integrals are calculated analytically

<u>Negative:</u> cusp condition is not fulfilled => slow convergence, thousands of nonlinear parameters to be optimized

Explicitly correlated exponentials

 $\psi_k = \exp\left(-\alpha r_{1A} - \beta r_{1B} - \gamma r_{2A} - \delta r_{2B} - \lambda r_{12}\right)$

<u>Positive:</u> cusp condition is fulfilled => potentially much more powerful than ECG. The most general two-center two-electron basis.

<u>Negative:</u> how to calculate integrals with such functions??? Haven't been used so far due to overwhelming technical difficulties.

Master two-center integral

A problem: integral to be calculated analytically:

$$f(r) = r \int \frac{d^3 r_1}{4\pi} \int \frac{d^3 r_2}{4\pi} \frac{e^{-w_1 r_{12} - u (r_{1A} + r_{1B}) - w (r_{2A} + r_{2B}) - y (r_{1A} - r_{1B}) - x (r_{2A} - r_{2B})}{r_{12} r_{1A} r_{1B} r_{2A} r_{2B}}$$

Previously: expansions in r, spherical-wave expansions of r₁₂...

K. Pachucki, Phys. Rev. A 86, 052514 (2012):

 $f(r) = \int_{0}^{+\infty} dt \, e^{t \, r} \, \frac{1}{2 \sqrt{\sigma}} \left[\theta(t_1 - t) \ln |\beta_{0,0}| + \theta(t_2 - t) \ln |\beta_{3,3}| - \theta(t_3 - t) \ln |\beta_{3,1} \beta_{3,3}| - \theta(t_4 - t) \ln |\beta_{0,1} \beta_{0,0}| \right],$ $\beta_{i,j} = \frac{\sqrt{\sigma} - \gamma_{i,j}}{\sqrt{\sigma} + \gamma_{i,j}}, \text{ where } \sigma \text{ and } \gamma_{i,j} \text{ are polynomials}$

Integral over tremains to be evaluated numerically.

Other two-center integrals

Integrals with additional **positive** powers of r's can be calculated from f(r) and its derivatives over r by recurrence relations.

Integrals with additional **negative** powers of r's can be calculated by numerically integrating f(r) over the nonlinear parameters:

$$\left\langle \frac{1}{r_{1A}^2} \right\rangle = \int_0^\infty dq \left\langle \frac{e^{-q r_{1A}}}{r_{1A}} \right\rangle$$

Difficulties: numerical instabilities

First calculations with exponential basis

K. Pachucki and V. A. Yerokhin, Phys. Rev. A 87, 062508 (2013):

TABLE I. Nonrelativistic energy of the ground electronic Σ_g^+ state of the H₂ molecule for two internuclear distances r, in a.u.

	r = 1.4		r = 14.0	
N	E	δE	E	δE
2	-1.173 468 555		-0.999 999 778 930	
4	-1.174 125 505	-0.000783527	$-1.000\ 000\ 480\ 057$	-0.000764402260
8	-1.174 373 774	-0.000 248 268	$-1.000\ 000\ 942\ 482$	-0.000000462425
16	-1.174469553	-0.000095779	$-1.000\ 000\ 955\ 376$	-0.000000012893
32	-1.174474880	-0.000005327	$-1.000\ 000\ 958\ 807$	-0.000000003430
64	-1.174475260	-0.000 000 379	$-1.000\ 000\ 959\ 559$	-0.000000000934
	-1.174475714220^{a}		$-1.000\ 000\ 960\ 680\ 791^{b}$	

^aJames-Coolidge basis with $N \approx 20\,000$ [7]. ^bExplicitly correlated asymptotic basis with $N \approx 20\,000$ [7].

TABLE II. Expectation value of the operators r_{12}^{-2} and r_{1A}^{-2} for the
ground electronic Σ_g^+ state of the H ₂ molecule for two internuclear
distances r, in a.u.

	r = 1.4		r = 14.0	
Ν	$\langle r_{12}^{-2} \rangle$	$\langle r_{1A}^{-2} \rangle$	$\langle r_{12}^{-2} \rangle$	$\langle r_{1A}^{-2} \rangle$
8	0.518482	1.60412	0.005 155 876	1.002 558 4
16	0.517917	1.60165	0.005 155 881	1.002 555 5
32	0.517948	1.60173	0.005155882	1.002 562 3
64	0.517934	1.60170	0.005155882	1.002 563 1
	0.517913 ^a	1.5 97 56ª		

^aGaussian basis with $N \approx 1200$ [13].

Conclusion

Theory of H₂ molecule reached a very high level of sophistication. Excellent agreement between theory and experiment.

. Modern experiments require calculations of higher-order QED Corrections in H₂.

Towards calculations of $m\alpha^6$ corrections:

Proof-of-principle calculations with exponential two-center two-electron basis set are reported.

Basis set yields a very compact representation of the wave Function, but is difficult to work with.

Theory versus Experiment: current status

Component	D_0/cm^{-1}
E _{BO}	36112.5927(1)
$+\beta E_{AD}$	+5.7711(1)
$+\beta^2 E_{\rm NA}$	+0.4340(2)
$+\alpha^2 E_{\text{REL}}$	-0.5318(5)
$+\alpha^{3}E_{\text{QED}}$	-0.1948(3)
$+ \alpha^4 E_{HQED}$	-0.0016(8)
E	36118.0696(11)

Dissociation energy in H_2 and D_2

118.0696(11)	D_0/cm^{-1}	
	H ₂	D_2
Experiment (1993) ²	36 118.06(4)	36748.32(7)
Experiment (2004) ³	36 118.062(10)	36748.343(10)
Experiment (2009/10) ^{4,5}	36 118.069 62(37)	36748.36286(68)
heory (2009) ⁶	36118.0696(11)	36748.3634(9)
Difference	0.0000(12)	0.0005(11)

Komasa J. Chem. Phys. 130, 164113 (2009)

Theory: Pachucki,

²E. E. Eyler, N. Melikechi, *Phys. Rev. A* 48, R18 (1993);

³Y. Zang et al., Phys. Rev. Lett. **92**, 203003 (2004);

⁴Liu, Salumbides, Hollenstein, Koelemeij, Eikema, Ubachs, Merkt, JCP 130, 174306 (2009)

⁵Liu, Sprecher, Jungen, Ubachs, Merkt, *JCP* **132**, 154301 (2010);

⁶Piszczatowski, Lach, Przybytek, Komasa, Pachucki, Jeziorski, JCTC 5, 3039 (2009)