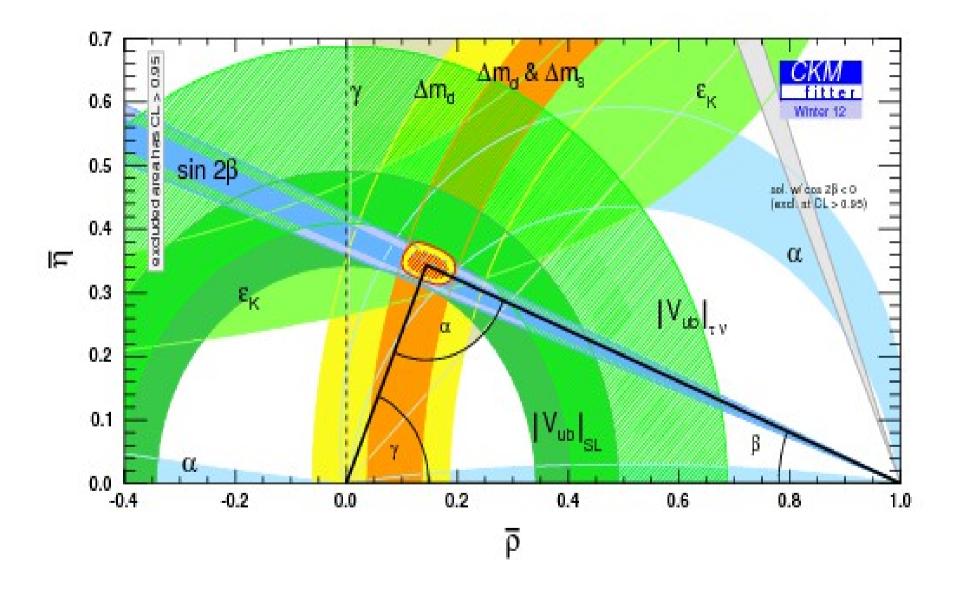
Измерение элемента ККМ-матрицы |Vcd| в эксперименте BES-III

А. Жемчугов ОИЯИ


- Собственные состояния слабого взаимодействия ≠ массовые кварковые состояния
- Матрица Кабиббо-Кобаяши-Маскава

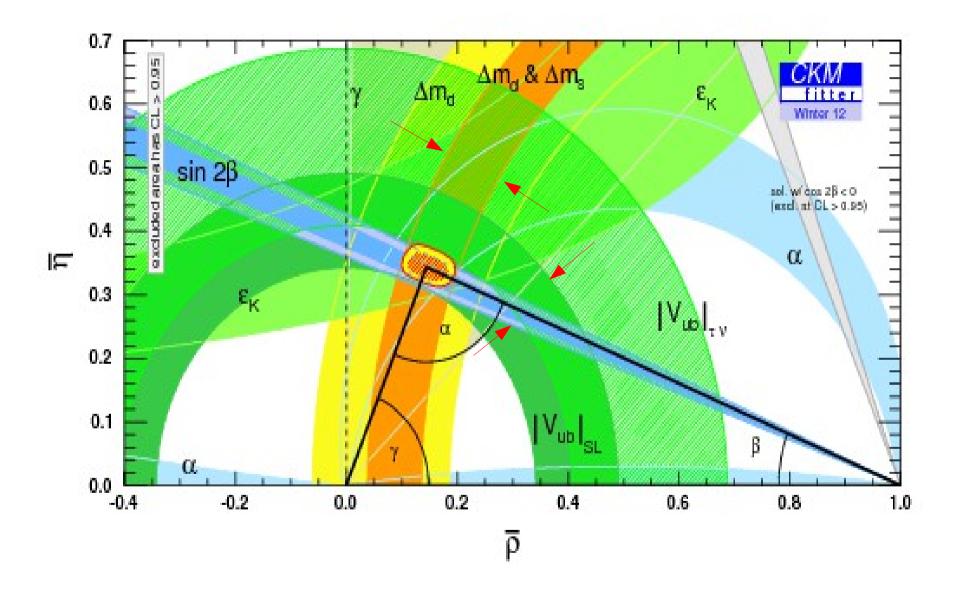
$$\begin{vmatrix} d' \\ s' \end{vmatrix} = \begin{vmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{vmatrix} \begin{vmatrix} d \\ s \\ b \end{vmatrix}$$

• Предположение унитарности ККМ-

матрицы:
$$\Sigma_{i}V_{ij}V_{ik}^{*} = \delta_{jk}$$
 $\Sigma_{j}V_{ij}V_{kj}^{*} = \delta_{ik}$

$$\begin{vmatrix} d' \\ s' \\ b' \end{vmatrix} = \begin{vmatrix} 1 - \lambda^2 / 2 & \lambda & A \lambda^3 (\rho - i \eta) \\ -\lambda & 1 - \lambda^2 / 2 & A \lambda^2 \\ A \lambda^3 (1 - \rho - i \eta) & A \lambda^2 & 1 \end{vmatrix} \begin{vmatrix} d \\ s \\ b \end{vmatrix}$$

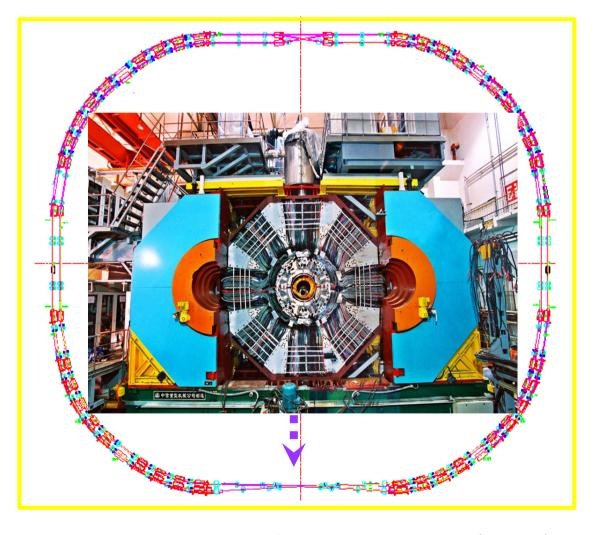
Лептонные распады D-мезонов


$$D^{+}$$

$$\bar{d} \qquad \qquad V$$

$$\Gamma(D^{+} \rightarrow \mu^{+} \prime_{\square}) = f_{D}^{2} |V_{cd}|^{2} \frac{G_{F}^{2}}{8\pi} m_{D} m_{\square}^{2} \left(1 - \frac{m_{\square}^{2}}{m_{D}^{2}}\right)^{2}$$

Измерение относительной вероятности лептонного распада D - мезона:


- измерение $f_D^{} \to проверка LQCD$, уточнение расчета $f_B^{}$
- измерение |Vcd| → проверка унитарности ККМ-матрицы

Эксперимент BES-III

Эксперимент BES-III

Германия, Италия, Китай, Нидерланды, ОИЯИ, Пакистан, Россия, США, Турция, Швеция, Южная Корея, Япония

Месторасположение: ИФВЭ АН КНР, г.Пекин, КНР

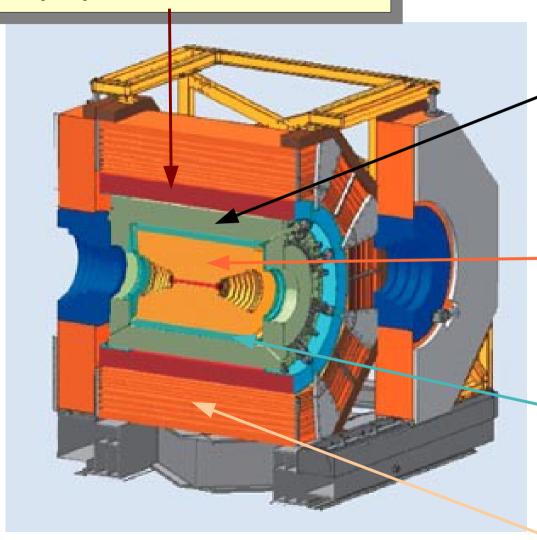
Энергия пучка BEPC-II: 1.0-2.3 ГэВ
Проектная светимость 1 х 10³³/cm²/s @ψ(3770)
Достигнутая светимость: 0.65 х 10³³/cm²/s

Этапы проекта:

2004 - Начало модернизации ВЕРС

2006 - 2007 *С*борка и запуск установки BESIII

2008 - начало работы BEPC-II


2009 - начало набора

статистики

Установка BES-III

NIM A614, 345 (2010)

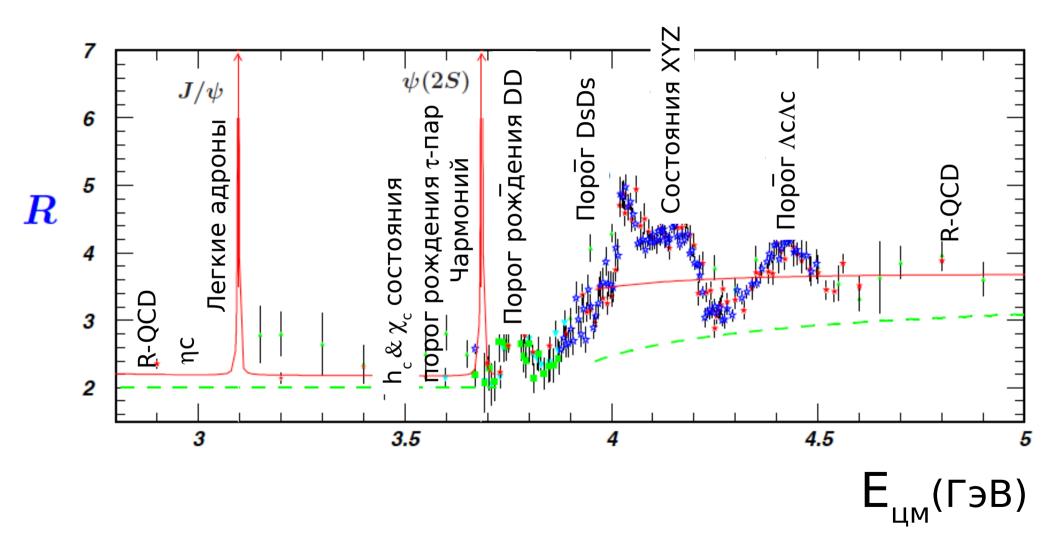
Сверхпроводящий магнит: 1 Тл

EMC: кристаллы Csl

- Энергетическое разрешение: 2.5%@1GeV
- Координатное разрешение: 6mm

MDC:

- Координатное разрешение: σ_{xy} =120 μ m
- Импульсное разрешение: 0.5% @ 1GeV
- Разрешение **dE/dx**: 6%

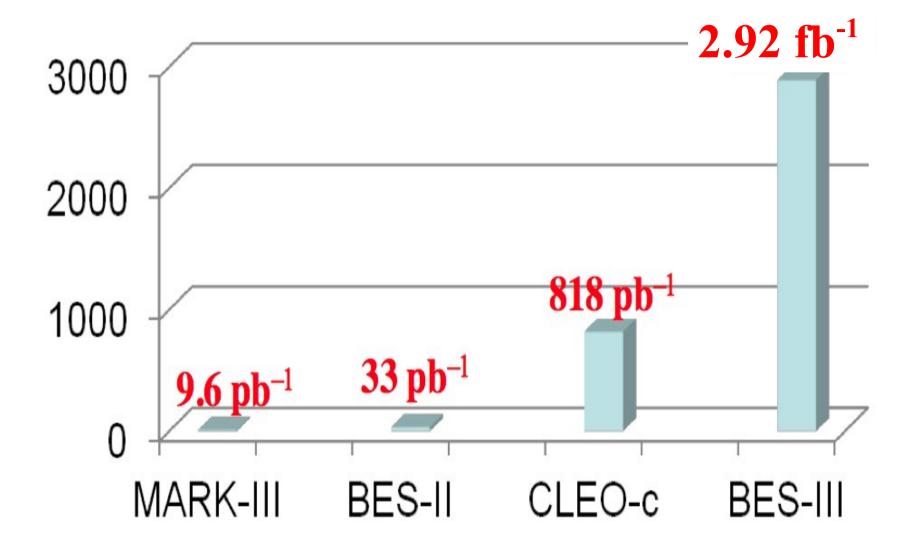

ТОF (два слоя сцинтилляторов):

Временное разрешение: **100ps** (центр) **110ps** (торцы)

Muon ID:

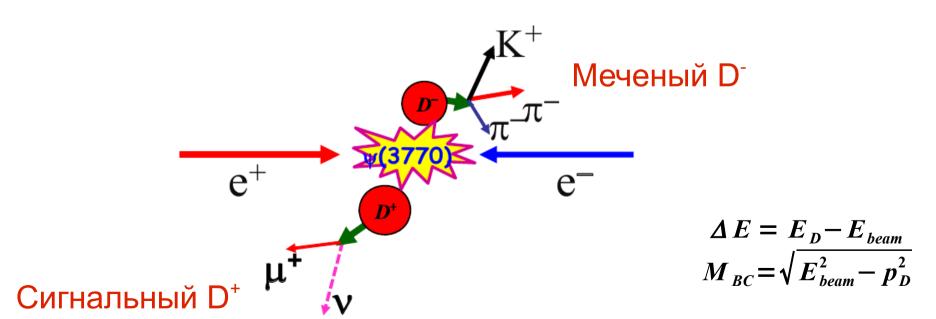
9 слоев RPC (8 в торцах) внутри ярма магнита

Цель эксперимента: прецизионные измерения в области √s = 2.0 – 4.6 GeV



Данные за 4 года работы ускорителя

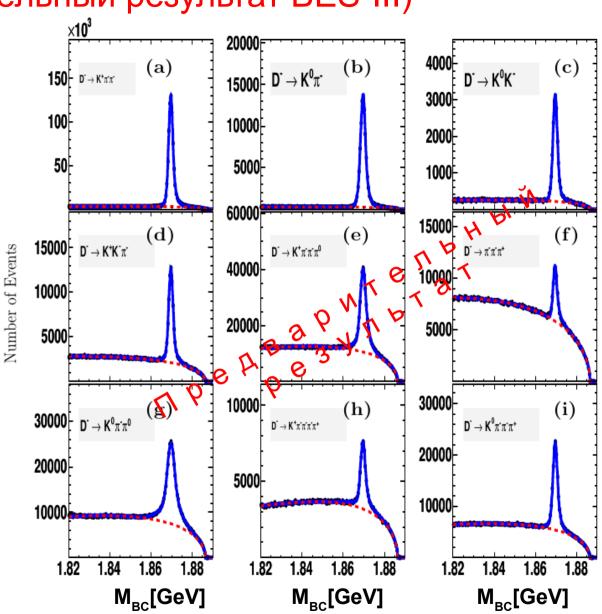
J/ψ	1,2 х10 ⁹ событий	наибольшая в мире статистика	
Ψ'	0.6 х10 ⁹ событий	наибольшая в мире статистика	
ψ(3770)	2,92 fb ⁻¹	в 3 раза больше общемировой статистики	
D _s D̄ _s @ 4.01 ГэВ	~0,5 fb ⁻¹	единственные в мире данные	
Y (4260)	~0,5 fb ⁻¹	единственные в мире данные	
Y (4360)	~0,5 fb ⁻¹	единственные в мире данные	
Скан на пороге τ	24 pb ⁻¹		


Более 40 публикаций на основе полученных данных

Лептонные распады
$$\mathbf{D}^{\scriptscriptstyle +}\!\!\to\!\!\mu^{\scriptscriptstyle +}\!\!\mathbf{v}_{\scriptscriptstyle \mu}$$

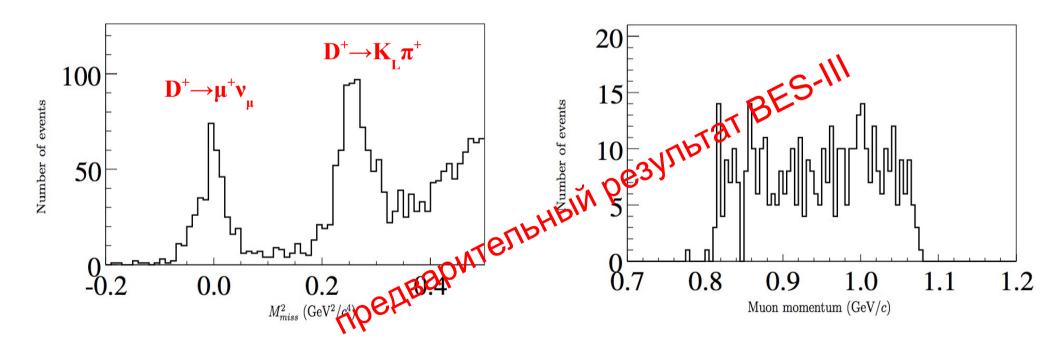
Преимущества изучения очарованных частиц вблизи порога

- В области резонанса $\psi(3770)$ в основном образуются пары очарованных мезонов D^+D^- или D^0D^0
- Около 15% распадов D мезонов реконструируются полностью
- Мечение одного из D-мезонов по адронным распадам дает возможность изучать лептонные и полулептонные распады второго D-мезона в бесфоновых условиях. Нейтрино восстанавливается по недостающей энергии и импульсу.


Мечение $D^+ \rightarrow \mu^+ \nu_{\mu}$

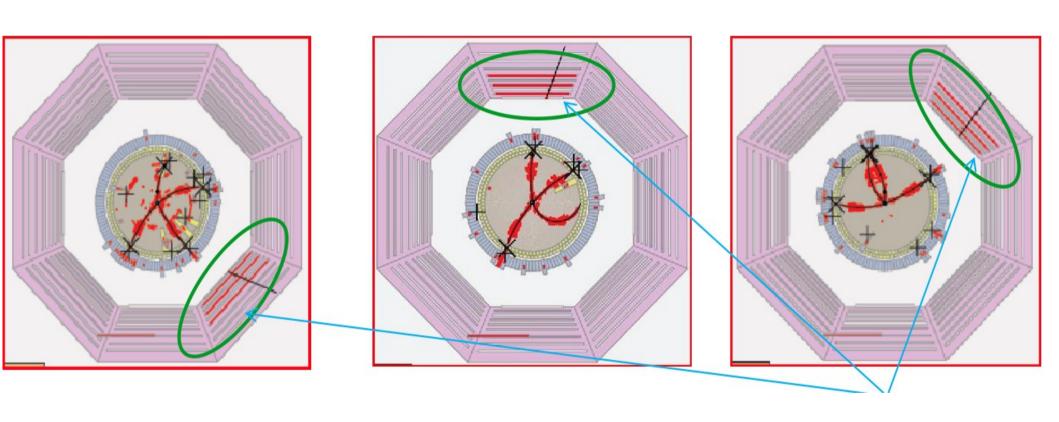
(предварительный результат BES-III)

Девять мод мечения D^-


- a) $K^{+}\pi^{-}\pi^{-}$
- b) $K^0 \pi^-$
- c) $K^0 K^-$
- d) $K^+K^-\pi^-$
- e) $K^+ \pi^- \pi^- \pi^0$
- f) $\pi^+\pi^-\pi^-$
- g) $K^0\pi^-\pi^0$
- h) $K^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{+}$
- i) $K^0 \pi^- \pi^- \pi^+$

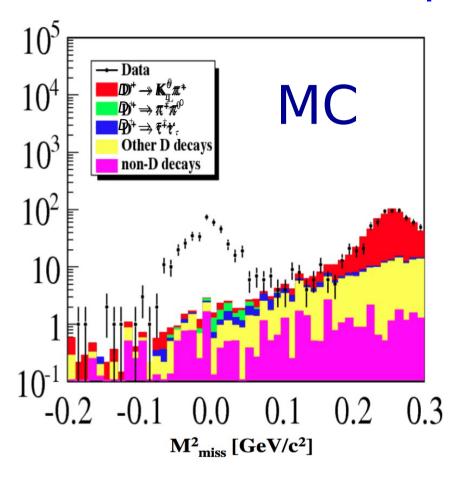
$$N_{D^{-}}^{tag} = (1.566 \pm 0.002) \times 10^{6}$$

B 2.92 $\phi \delta \mu^{-1}$



Отбор сигнала

- Только один трек на сигнальной стороне, с соответствующим зарядом
- Идентификация мюона в детекторе
- Нет дополнительных фотонов
- Отбор по недостающей массе $M_{\text{miss}}^2 = \left(E_{\text{Beam}} E_{\mu}\right)^2 \left(-p_{\text{tag}}^{\parallel} p_{\mu}^{\parallel}\right)^2 pprox 0$



Пример событий

сигнал в идентификаторе мюонов

Оценка вклада фоновых процессов

Моделирование: 47.7 ± 2.6 Оценка из эксп. 48.9 ± 4.8

данных:

Предварительный результат BES-III

Numbers of background events from $D\bar{D}$ decays				
Source	N_{bkg}^{MC}	Scale factor f	$N_{bkg}^{data} = rac{N_{bkg}^{MC}}{f} imes rac{\eta^{data}}{\eta^{MC}}$	
$D^+ \to K_L^0 \pi^+$	111	10.8	$7.9 \pm 0.8 \pm 0.3$	
$D^+ \to \pi^+ \pi^0$	53	10.8	$3.8\pm0.5\pm0.3$	
$D^+ \to \tau^+ \nu_\tau$	96	10.8	$6.9\pm0.7\pm0.3$	
Other D decays	250	10.8	$17.9 \pm 1.1 \pm 0.5$	
Sum	510	10.8	$36.4 \pm 1.6 \pm 0.7$	
Numbers of background events from $non - D\bar{D}$ decays				

Numbers of background events from $non - D\bar{D}$ decays			
Source	N_{bkg}^{MC}	Scale factor f	$N_{bkg}^{data} = rac{N_{bkg}^{MC}}{f} imes rac{\eta^{data}}{\eta^{MC}}$
$e^+e^- o(\gamma)\psi(3686)$	2	6.3	$0.2\pm0.2\pm0.0$
$e^+e^- o (\gamma)J/\psi$	0	5.7	$0.0\pm0.0\pm0.0$
$e^+e^- o Light\ Hadron$	33	3.1	$8.2\pm1.4\pm0.3$
$e^+e^- \to \tau^+\tau^-$	15	6.0	$1.9\pm0.5\pm0.4$
$\psi(3770) o non - Dar{D}$	7	5.8	$0.9\pm0.4\pm0.9$
Sum			$11.3\pm1.6\pm1.0$
Total (D decay and $non - D$ decay)			$47.7 \pm 2.3 \pm 1.3$

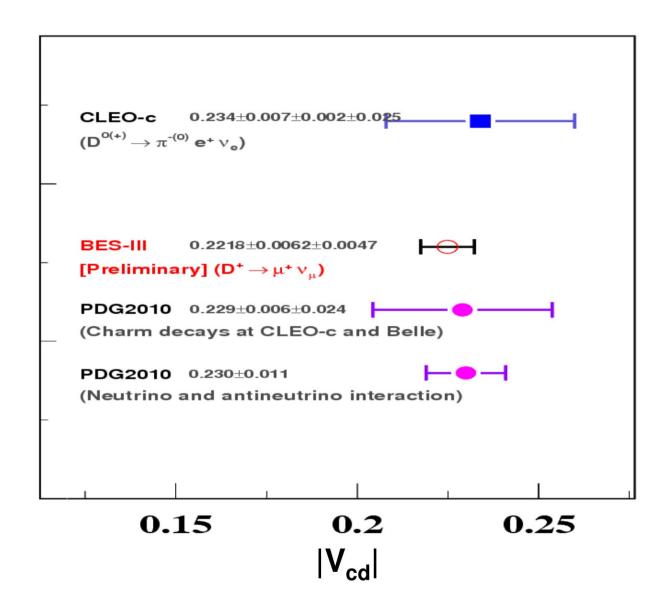
Event type	Number
$N(D^+ o \mu^+ \nu_\mu)^{ m candidate}$	425
$N_{ m b}$	$47.7 \pm 2.3 \pm 1.3$
$N(D^+ \to \mu^+ \nu_\mu)$	$377.3 \pm 20.6 \pm 2.6$

Относительная вероятность распада D⁺→µ⁺v_µ (предварительный результат BES-III)

$$N(D^+ \to \mu^+ \nu) = 377.3 \pm 20.6$$

 $B(D^+ \to \mu^+ \nu) = (0.0374 \pm 0.0021 \pm 0.0006)\%$

- Хорошее согласие с результатами CLEO-с
- Точность измерения все еще ограничена доступной статистикой событий


Определение |Vcd|

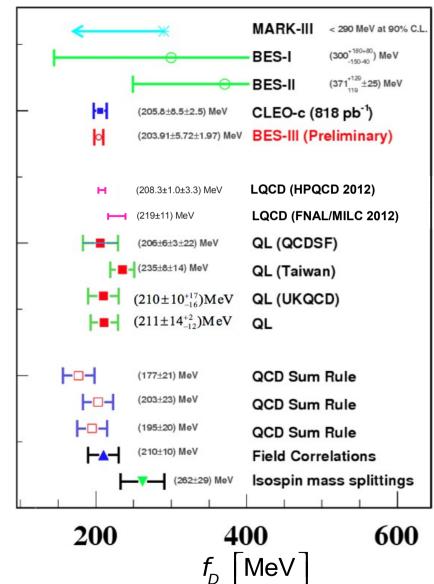
$$\Gamma(D^+ \to \mu^+ \gamma_{\square}) = f_D^2 |V_{cd}|^2 \frac{G_F^2}{8\pi} m_D m_D^2 \left(1 - \frac{m_D^2}{m_D^2}\right)^2$$

$$\tau_{D+}$$
 = (1040±7) fs,
 M_{D+} = (1896.60±0.16) MeV
 $M_{\mu+}$ = (105.658±0.000) MeV
 f_{D+} = 207±4 MeV (from LQCD)

$$|V_{cd}| = (0.222 \pm 0.006 \pm 0.005)$$

Предварительный результат BES-III

Определение f


$$\Gamma\left(D^{+} \rightarrow \mu^{+} \right) = f_{D}^{2} \left|V_{cd}\right|^{2} \frac{G_{F}^{2}}{8\pi} m_{D} m_{D}^{2} \left(1 - \frac{m_{D}^{2}}{m_{D}^{2}}\right)^{2}$$

• Используя значение |Vcd|, полученное в предположении унитарности, можно получить:

$$f_{D^{+}} = (203.9 \pm 5.7 \pm 2.0)$$
 MeV

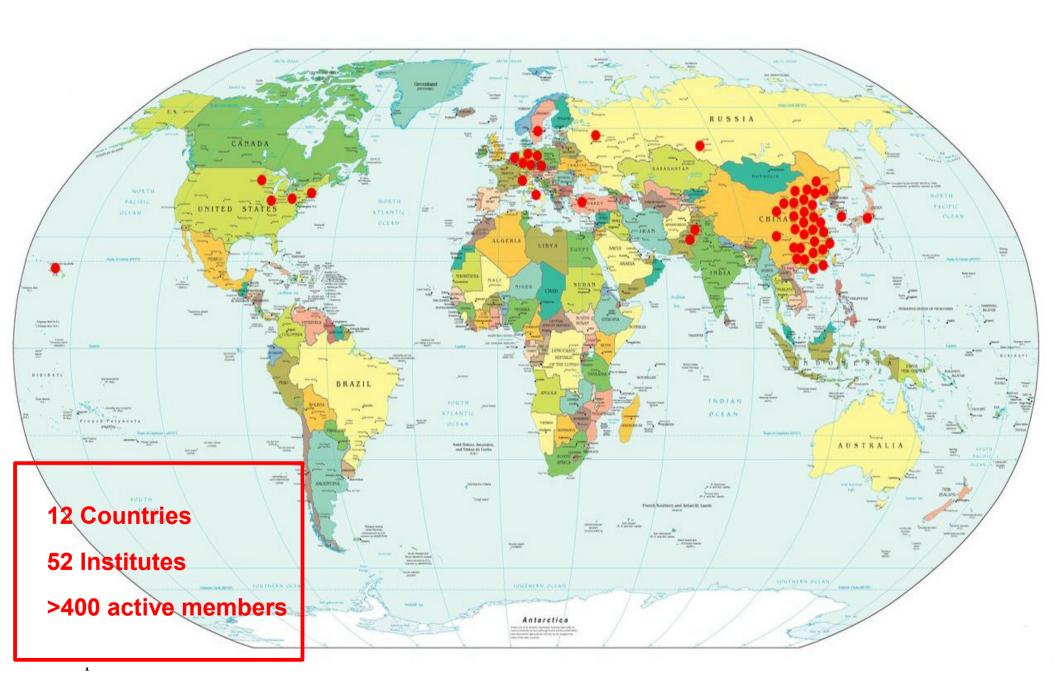
Предварительный результат BES-III

Заключение

• В эксперименте BES-3 выполнено наиболее точное измерение относительной вероятности распада $\mathbf{D}^{\scriptscriptstyle{\dagger}}\!\!\to\!\!\mu^{\scriptscriptstyle{\dagger}}\!\!\mathbf{v}_{_{\mu}}$

$$\mathcal{B}(D^+ \to \mu^+ \nu) = (0.0374 \pm 0.0021 \pm 0.0006)\%$$

• Наиболее точное измерение


$$|Vcd| = 0.222 \pm 0.006 \pm 0.005$$

• Наиболее точное измерение

$$f_{D^{+}} = (203.9 \pm 5.7 \pm 2.0) \text{ MeV}$$

Результаты предварительные

The BES-III Collaboration

Программа исследований BES-III

<u>Физика легких адронов</u>

- -мезонная & барионная
- спектроскопия
 - -поиск экзотических состояний
 - -двухфотонные процессы

Изучение очарованных частиц

- полулептонные формфакторы
- константы распада $f_D \& f_{Ds}$
- матрица СКМ: $V_{\it cd}$, $V_{\it cs}$
- D^0 - $\overline{D}{}^0$ смешивание и CP-нарушение

<u>Изучение чармония</u>

- спектроскопия
- переходы и распады

Проверки КХД & т -лептоны

- измерение *R*-отношения
- распады τ -лептона
- *p* & *n* формфакторы

Прецизионные измерения масс

- измерение массы τ-лептона
- массы $D^0, D^+ \& D_s$

<u>Изучение состояний ХҮZ</u>

- -Y(4260), Y(4360)
- поиск новых состояний

Оценка погрешностей

Source	Systematic uncertainty [%]
Number of D^- tags $(N_{D_{tag}^-})$	0.6
Muon tracking	0.5
μ selection	0.3
$E_{\gamma_{max}}$ cut	0.7
Muon momentum cut	0.1
M_{miss}^2 cut	0.5
Background estimation	0.7
Monte Carlo statistics	0.2
Radiative correction	1.0
Total	1.7