Орбиты визуально-двойных и кратных звезд, полученные методом параметров видимого движения в течение последних 40 лет

Л.Г. Романенко^{1,*}, О.В. Кияева¹, И.С. Измайлов¹, Н.А. Шахт¹, Д.Л. Горшанов¹

 $^{1}\Gamma AO PAH$ * *e-mail:* <u>lrom1962@list.ru</u>

Аннотация

Подведен итог многолетней работы в Пулкове — представлены орбиты 67 пироких пар визуально-двойных и кратных звезд (входящих в 64 системы), полученные методом параметров видимого движения (ПВД). Данный метод определения орбит по коротким дугам опирается на самые надежные астрометрические и астрофизические данные, соответствующие одному моменту времени. Остальные наблюдения, накопленные в мире, служат для контроля орбиты и уточнения некоторых параметров. Проведено сравнение всех ранее определенных ПВД-орбит с новыми наблюдениями, часть из них пересчитана, добавлены новые. Проанализированы данные Gaia DR2 для звезд Пулковской программы наблюдений на 26-дюймовом рефракторе. По этим данным вычислены орбиты 16 звезд. В 20 случаях из 67 квазиодномоментное движение по данным Gaia DR2 на момент 2015.5 противоречит движению по общемировым наблюдениям. Возможная причина — присутствие внутренних подсистем. Приведена также ориентация полученных орбит в галактической системе координат.

Введение

Двойные звезды были впервые открыты Уильямом Гершелем в конце XVIII века. В XIX и XX веке их активно открывали Джон Гершель, Вильгельм и Отто Струве, Поль Куто и многие другие исследователи. Для звезд с периодами обращения не более, чем 100-200 лет, были определены надежные орбиты, которые позволили определить массы звезд и вывести фундаментальные законы, связывающие массы, спектры, светимости и параллаксы звезд.

Широкие, медленно обращающиеся двойные и кратные звезды были обделены вниманием исследователей, так как с момента их открытия до настоящего времени наблюдения охватывают малую дугу орбиты. Однако такие звезды могут оказаться внешними парами открытых или еще не открытых кратных систем, а именно в сторону кратных систем, компоненты которых открывают все больше, в настоящее время сместился интерес исследователей — см. работы (Hale, 1994; Agati et al., 2015; Tokovinin, 2021). Их изучение в итоге несет информацию о звездообразовании и динамической эволюции подсистем в нашей Галактике. Поэтому задача определения орбит малоизученных широких двойных звезд остается актуальной.

Наблюдения двойных звезд были традиционной темой Пулковской обсерватории с начала ее открытия в 1839 году. Поэтому, когда после Великой Отечественной войны в Пулкове появился 26-дюймовый рефрактор, приоритетной задачей стало возобновление наблюдений широких двойных звезд в соответствии с возможностями данного телескопа ($\rho > 3''$).

Специально для определения орбит таких звед был доработан метод параметров видимого движения — ПВД, см. (Киселев, Кияева, 1980), который раннее использовался для определения орбиты искусственного спутника Земли по одной фотографии со многими экспозициями (Киселев, Быков, 1973).

1 Применение метода ПВД

Метод ПВД предназначен для определения первоначальных орбит широких визуальнодвойных звезд с большим периодом обращения по положению и скорости в один момент времени на основе результатов наблюдений, полученных разными доступными методами. Это параметры видимого относительного движения (ПВД) в один момент времени T_{0} : расстояние между компонентами (ρ), позиционный угол (θ), видимое относительное движение (μ) и позиционный угол направления видимого движения (ψ), радиус кривизны (ρ_{c}). Точнее всего ПВД получаются из однородных наблюдений (базис), выполненных на одном телескопе. для исключения аппаратных систематических ошибок. См., например, ряды фотографических наблюдений на 26-дюймовом рефракторе ГАО РАН за 1957–2007 гг. (Kiselev et al., 2014; Izmailov et al., 2016).

Кроме того, необходимыми данными являются параллакс p_t (для связи линейных и угловых величин), относительная лучевая скорость компонентов $\Delta V_r = V_{rB} - V_{rA}$ (км/с), получаемая из спектроскопических наблюдений (для вычисления вектора пространственной скорости спутника относительно главной звезды) и оценка суммы масс компонентов ΣM согласно данным о физических свойствах звезд.

Если удается определить все пять параметров, включая радиус кривизны, то расстояние между компонентами r в астрономических единицах вычисляется по формуле

$$r^{3} = k^{2} \frac{\rho \rho_{c}}{\mu^{2}} |\sin(\theta - \psi)| \tag{1}$$

где $k^2 = 4\pi^2 \Sigma M$ — динамическая постоянная, если измерять расстояние в а.е., время в годах, массу в M_{\odot} .

Тогда получаем два вектора положения, которые соответствуют положению вторичного компонента симметрично относительно картинной плоскости, а, следовательно, и две орбиты ($\pm\beta$, где β — угол между пространственным положением спутника и его проекцией на картинную плоскость).

$$\beta = \pm \arccos\left(\rho/(p_t r)\right) \tag{2}$$

Иногда по согласию со всем рядом наблюдений (см. *Вашингтонский каталог двойных* звезд — WDS, Mason et al. (2016)) можно выбрать одно решение.

Если радиус кривизны определить невозможно, то расстояние между компонентами получаем согласно условию, необходимому для эллиптической орбиты:

$$\frac{\rho}{p_t} \le r < \frac{2k^2}{v^2},\tag{3}$$

где v — модуль пространственной скорости в а.е./год. В этом случае мы получаем семейство орбит. Каждую орбиту семейства характеризует угол β .

Если невозможно оценить радиус кривизны по короткой дуге однородных наблюдений, но весь ряд имеющихся наблюдений отражает нелинейное эллиптическое движение, то более правильную орбиту также удается выбрать из семейства по согласию со всем рядом наблюдений.

Чтобы получать ПВД с высокой точностью, в Пулковской обсерватории большое внимание уделялось получению однородного многолетнего ряда, по которому более уверенно определяется относительное движение. Однако для некоторых звезд приходилось нарушать однородность и использовать дополнительные наблюдения из каталога WDS.

ПВД-орбиты для двух звезд, входящих в данную работу (НІР 12706 и НІР 33287), требовали незначительной корректировки и уточнялись методом дифференциальных поправок по программе ORBITX (Tokovinin, 1992). В табл. 2 для этих звезд приводится сравнение ПВД, полученных по указанному в таблице базису, и эфемерид ПВД, соответствующих орбитам, уточненным по программе ORBITX.

Не для всех звезд нашей программы в литературе имеются достаточно точные лучевые скорости. Иногда этот параметр также приходилось подбирать по согласованию с наблюдениями. Тогда долгота восходящего узла и долгота периастра от узла определяются с точностью до 180° и эфемериды орбит в проекции на картинную плоскость совпадают. Остальные параметры остаются прежними, но меняется ориентация плоскости орбиты в Галактике. Таким образом, для звезд, представленных в данной работе, получаем 1, 2, 4 решения или семейство орбит.

Для первоначальной оценки суммы масс компонентов мы использовали соотношение "масса-спектр-светимость" по справочнику (Allen, 1999) и данным каталога WDS. Однако, для многих звезд в каталоге WDS нет спектральных классов. Тогда приходилось пользоваться разными источниками, которые не всегда дают однозначный результат. В настоящее время лучший способ получить оценку массы — использовать диаграммы, описывающие эволюционные треки, которые связывают показатель цвета и звездную величину (Girardi et al., 2000; Bressan et al., 2012).

Так как большая часть компонентов визуально-двойных звезд нашей программы оказались спектрально-двойными, данные о них содержатся в *Каталоге кратных звезд* — MSC, (Tokovinin, 2018), который является надежным источником. Тем не менее, в некоторых случаях наши исследования динамики приводят к получению избытка масс в звездных системах, на что следует обращать внимание при дальнейших исследованиях.

Чем точнее исходные данные, тем надежнее орбита. Ошибки каждого орбитального параметра мы определяем суммарным влиянием ошибок всех исходных параметров. Так как это влияние несимметрично относительно полученного решения, то мы приводим две ошибки, которые соответствуют максимальному и минимальному значению данного элемента орбиты. Сумма масс компонентов является и исходным, и уточняемым параметром. Она связана с параллаксом функциональной зависимостью, поэтому мы ее фиксируем. Главное достоинство данного метода в том, что можно контролировать качество полученного решения, так как для определения параметров видимого движения мы используем не все имеющиеся наблюдения, а только базис. Также можно проверить согласованность исходных данных между собой. Это принципиально отличает его от методов, где главный критерий — согласие с позиционными наблюдениями, которые всегда позволяют получить орбиту, но плохо работают на короткой дуге.

Естественно, метод ПВД имеет ограничения, и его применение требует индивидуального подхода. Прежде всего, невозможность согласовать все исходные данные связана с тем, что внутренние подсистемы могут искажать ПВД, а также принятые массы звезд. В этом случае метод применять нельзя.

В тех случаях, когда удается получить орбиту методом ПВД, она в настоящее время является более правильной, чем другие орбиты, так как основывается на целом комплексе результатов наблюдений как астрометрического, так и астрофизического характера.

2 Результаты

Цель данной работы — подвести итог многолетней работы, систематизировать полученные ранее результаты и добавить новые орбиты.

Мы пересмотрели все орбиты, полученные за 40 лет, выполнили сравнение с современными наблюдениями из каталога WDS, ПЗС-наблюдениями на 26-дюймовом рефракторе в Пулкове за 2003–2019 гг. (Izmailov et al., 2010; Izmailov, Roshchina, 2016; Izmailov et al., 2020) и с относительными положениями и движениями, вычисленными нами по высокоточным данным из каталога Gaia DR2 (Gaia Collaboration et al., 2018).

Большая часть объектов нашего исследования имеет разделения от 3" до 39", кроме нескольких более тесных двойных, не входящих в программу наблюдений Пулковской обсерватории, и более широких пар. В основном, это карлики спектральных классов F, G и К из ближайшей окрестности Солнца. Всего рассмотрено 67 пар, входящих в 64 визуальнодвойные и кратные системы. Среди них три визуально-тройные (ADS 48 ABF, ADS 7034 ABC и ADS 10288 ABC), для которых нами определены и внутренние, и внешние орбиты. Для 33 пар ПВД-орбиты получены однозначно, для 14 пар — два решения, для 3 пар — 4 решения, для 17 пар вычислены семейства орбит.

Для 29 звезд орбиты были улучшены. Чаще всего улучшение заключалось в использовании более точного параллакса из каталога Gaia DR2 и однородного ряда пулковских ПЗС-наблюдений вместо разнородных. В данной работе мы публикуем также орбиты ADS 895 и HIP 12706, полученные впервые. Полностью по положениям, собственным движениям, параллаксам и лучевым скоростям из Gaia DR2 пересчитаны орбиты 16 звезд и получены первые орбиты семи звезд.

В 20 случаях из 67 квазиодномоментное движение по данным Gaia DR2 противоречит среднему движению по общемировым наблюдениям. Это является основанием для того, чтобы заподозрить присутствие дополнительного спутника. Тогда для улучшения наших орбит мы использовали только параллаксы Gaia DR2, новые данные из литературы и удлинившиеся пулковские ряды. См. например, (Shakht et al., 2020; Романенко, Измайлов, 2021; Kiyaeva et al., 2021).

С другой стороны, известно, что 24 пары имеют подтвержденные внутренние подсистемы. Обычно, короткопериодические спектральные спутники не влияли на значения ПВД,

Таблица 1: Иде	тификаторы, ,	данные WDS	об исследуемы	их звездах,	характеристики	рядов	наблюдений
и полученных резу.	льтатов						

N	HIP	ADS	Comp.	WDS	m_1	m_2	$Sp1_W$	$Sp2_W$	$Sp1_T$	$Sp2_T$	$T1_W$	$T2_W$	n_W	$T1_P$	$T2_P$	n_P	n_C	k_0	NOTE	Ref.
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
1	50	-		00006-5306	6.55	9.85	G0IV	-	-	-	1836	2015	27	-	-	-	-	4	С	[1]
2	473	48	AB	00057 + 4549	8.98	9.15	K6	M0	K6V	K6V	1876	2015	399	1961	2019	148	056	2	CVG	[2,3]
3	473/428	48	AB-F	00057 + 4549	8.98	10.19	K6V	M2e	K6V	K8V	1897	2007	37	1968	1995	117	000	F	VWM	[2]
4	1475	246	AB	00184 + 4401	8.13	11.04	M1V	M3.5V	K8V	M0V	1860	2015	123	1994	2019	007	160	1	V(C)	[4]
5	2844	497	AB	00360 + 2959	8.39	9.05	G2V	G7V	G7V	G6V	1824	2015	134	1971	2019	087	066	1	MVWÑ	[0]
6	5110	895		01055 + 1523	9.24	9.93	K0		K2.5V	K7V	1829	2007	98	1960	2019	046	093	2	V(C)WM	[0]
7	12706	-	AB	02433 + 0314	3.54	6.18	A1V		-	-	1825	2014	235	-	-	-	-	2	CO(M)W	[0]
8	12777	2081	AB	02442 + 4914	3.89	9.14	F7V	M1.5	F6V	K8V	1782	2013	76	-	-	-	-	1	VWG	[0]
9	12780/779	2098	AB	02442-2530	7.5	8.1	G3V		G2V	K0V	1835	2013	29	-	-	-	-	F	VWM	[1]
10	15058	2416		03140 + 0044	8.14	8.17	F8		G9V	K0V	1831	2012	167	-	-	-	-	2	C(M)	[[1]
11	15220	2427	AB	03162 + 5810	10.30	11.38	M2V		MOV	M0V	1914	2013	82	1971	2019	100	149	1	V(C)G	[0]
12	17129	2668	A-Bb	03401 + 3407	7.52	7.60	F9V		F9V	F4V	1823	2012	230	2003	2019	000	045	2	(C)MW	5
13	17666	2757	AB	03470 + 4126	8.20	8.82	K1V	K2V	G8V	K1V	1822	2011	129	1960	2019	099	058	1	VWM	[4]
14	20390	TTau	NS	04220 + 1932	5.5	8.1	G5V		-	-	1990	2002	69	-	-	-	-	4	CWM	[0]
15	32609	5436	AB	06482 + 5542	6.28	6.34	dF5	dF6	F6V	F5V	1821	2014	126	1962	2019	033	082	2	MVW	[0]
16	33287	5570		06555 + 3010	8.72	8.97	G0		K0V	K0V	1831	2015	110	-	-	-	-	2	C(M)WO	[1]
17	35550	5983		07201 + 2159	3.55	8.18	A9III	K3V	(F6V)	K1V	1822	2013	254	1972	2019	108	074	1	MCVW	[6]
18	40527/32	6646	AB	08165 + 7930	8.40	8.64	G0		F3V	F8V	1832	2005	68	1962	2003	041	000	F	MVW	[0]
19	41184/81	6783		08243 + 4457	7.79	9.39	G0		G2V	K1V	1830	2012	41	1996	2006	017	000	F	VWG	[0]
20	43426	7034	AB	08508 + 3504	7.41	7.48	F8		G0V	F9V	1821	2012	125	1962	2019	020	066	1	VWG	[7]
21	43426	7034	AB-C	08508 + 3504	7.41	11.69	F8		G0V	K6V	1941	2005	4	-	-	-	-	F	VWMG	[7]
22	45343/*	7251	AB	09144 + 5241	7.79	7.88	M0V	M0V	K7V	K7V	1821	2015	449	1963	2019	185	075	1	CVW	[8]
23	48429	7551		09524 + 2659	9.12	9.50	K0		G7V	G9V	1830	2014	134	1972	2019	009	120	1	(C)WG	[0]
24	48804	7588		09572 + 4554	8.89	9.75	G0		G0V	G6V	1828	2013	46	1971	2019	011	107	1	VWG	[7]
25	50583	7724	AB	10200 + 1950	2.37	3.64	K0III		-	-	1782	2015	834	1992	2008	020	020	2	VW(C)	[9]
26	-	8002		10596 + 2527	8.57	9.22	K2	K5	K3V	K4V	1899	2014	102	1970	2018	061	056	1	CV	[10]
27	54407	8065		11080 + 5249	7.65	9.03	F8V		F8V	G7V	1830	2010	74	1970	2018	024	053	1	VWG(C)	[0]
28	54952	8100	AC	11152 + 7329	7.77	11.34	K5		K3V	M0.5V	1858	2011	66	1969	1999	041	000	2	(C)W	[[11]
29	56622	8236		11366 + 5608	7.73	8.17	G5	K7V	G2V	G7V	1828	2007	116	1962	2019	061	079	1	MVW(C)	[[5]
30	56809	8250	AB	11387 + 4507	6.53	8.23	G0V		G0V	K2V	1782	2015	137	1969	2019	048	107	1	MVWC	[10]
31	60831/32	8561		12281 + 4448	7.49	8.08	F9V		F8V	G3V	1791	2012	99	1971	2007	025	008	2	VWG	[7]
32	62561	8682	AB	12492 + 8325	5.29	5.74	A1IIIsh		-	-	1820	2011	68	1969	2007	023	000	F	MVW	0
33	64405	8814		13120 + 3205	7.40	7.64	F6V		F4V	F3V	1843	2014	255	1985	2004	032	000	2	VW(C)G	0
34	65011/12	8861	AB	13196 + 3507	9.62	11.90	M0.5V	M3V	K7V	K9V	1827	2012	53	1971	2019	081	215	2	(C)MW	[12]
35	66195	8959		13341 + 6746	9.26	9.56	G1V		G3V	G5V	1832	2007	47	1971	2019	051	137	1	VW(C)G	[0]
36	67422	9031		13491 + 2659	7.36	8.15	K4V	K6V	K3V	K5V	1823	2015	875	1962	2019	097	150	1	ĊĠ	[0]
37	67871	9048		13540 + 3249	8.63	8.97	F8		F9V	G0V	1823	2015	66	1962	2005	034	000	1	VWG	[7]
38	68588	9090		14024 + 4620	10.05	10.26	M2	M2.5	K8V	K7V	1889	2015	112	1962	2018	077	066	1	V(C)G	[0]
39	_	-		14051 + 4913	11.80	11.98	K4/5		G7V	G7V	1902	2016	18	1969	1975	022	000	F	VWG	[7]
40	69442	9167		14131 + 5520	9.06	9.42	K2		K1V	K1.5V	1831	2013	202	1971	2019	073	073	1	M(C)VW	[0]
41	69751	9192		14165 + 2007	6.47	8.42	F6V		F5V	G7V	1830	2015	157	2003	2019	000	119	1	CVW(M)	[[1]
42	71782	9346	AB	14410 + 5757	7.53	8.32	K0IV	G5IV	G9V	G4V	1830	2015	97	1979	2019	036	078	1	(M)VW	[18]
43	71876	9357		14421 + 6116	6.33	9.16	F4V		F4V	K1V	1832	2015	46	2004	2019	000	040	1	VWG(C)	[7]
44	73846	9497	AB	15055-0701	8.09	8.76	G0		F6V	G1V	1873	2014	83	-	-	-	-	1	CW(M)	[[1]
45	74666/74	9559	AB	15155 + 3319	3.56	7.89	G8III		(K3V)	G1V	1780	2015	109	1994	2005	010	000	F	VŴG	[0]
46	75809/29	9696	AB	15292 + 8027	6.64	7.30	G0IV-V		(G3V)	G8V	1823	2010	87	1969	2004	044	000	F	VWG	[0]
47	80349	10044		16242 + 3702	8.43	8.79	K0		K1V	G3V	1823	2009	- 99	1962	2019	026	255	F	MVW	[0]
48	83020	10288	AB	16579 + 4722	7.93	10.85	K0		K2V	M0V	1908	2007	- 33	1993	2019	010	150	1	V(C)G	[0]
49	83020/06	10288	AB-C	16579 + 4722	7.93	8.05	K0V		K2V	K1.5V	1823	2011	38	1993	2019	011	000	F	MVWG	[0]
50	83451/54	10329		17033 + 5935	8.76	10.34	K4V		K2V	K7V	1830	2006	54	1970	2019	022	050	1	VWG	[0]
51	83608	10345	AB	17053 + 5428	5.66	5.69	F7V		F5V	F5V	1779	2015	794	1965	2019	019	150	1	CW	[12]
52	83988/96	10386	AB	17102 + 5430	8.85	9.21	K6V	K6V	K4V	K6V	1830	2012	42	1961	2019	027	033	1	VW	[4]
53	86614/20	10759	AB	17419 + 7209	4.60	5.59	F5IV	F8V	F5V	F7V	1800	2015	172	1980	2005	076	003	F	MVW	[0]
54	88136/27	11061	AB	18002 + 8000	-5.70	6.00	F7V	F7V	F7V	F6V	1782	2014	146	1964	2006	080	002	F	MVW	[0]
55	91768/72	11632	AB	18428 + 5938	9.11	9.96	M4	M4.5	K9V	K9V	1831	2015	608	1961	2019	189	158	1	CV	[13]
56	93873/99	GL745		19072 + 2053	10.95	10.99	M2V	M2V	K9V	K9V	1897	2012	17	1996	2007	009	000	F	VWG	[0]
57	94336	12169	AB	19121 + 4951	6.54	6.67	G3V	G3V	G2V	G3V	1819	2015	286	1961	2019	096	157	1	VW	[4]
58	96895/901	12815	AB	19418 + 5032	6.00	6.23	G1.5V		G2V	G2V	1800	2014	582	1960	2007	162	000	F	VWGM	[0]
59	97222	12889	AB	19456 + 3336	8.47	8.58	K3V		K1.5V	K1.5V	1828	2015	450	1995	2019	008	103	1	CV	[14]
60	97295	12913	AB	19464 + 3344	5.06	9.25	F5V		F6V	K2V	1822	2014	138	1995	2019	009	062	2	VW	[14]
61	97292	GL767	AB	19464 + 3201	10.38	11.15	M0.5V	M2V	K8V	M0V	1935	2015	81	1971	2019	035	311	1	(M)V(C)	[15]
62	104214/17	14636	AB	21069 + 3845	5.20	6.05	K5V	K7V	K5V	K6V	1753	2015	1672	1958	2019	328	254	1	CV	[16]
63	-	14878	AB	21200 + 5259	7.71	7.87	F8V		G0V	G8V	1828	2015	100	1985	2005	025	000	F	VW	[10]
64	105502	14909	AB	21221 + 1948	4.20	9.3	K0.5III		-	K0V	1780	2013	75	1994	2005	009	000	F	MVW	[0]
65	108456/61	15571	AB	21582 + 8252	7.00	7.47	F6IV-V		(F8V)	G6V	1825	2014	157	1960	2003	102	000	2	CMVW	[17]
66	108917	15600	Aa-B	22038 + 6438	4.45	6.40	A3m		(F3V)	F7V	1779	2015	276	1963	2019	089	149	4	MW	[0]
67	118281	17149	AB	23595 + 3343	6.46	6.72	F8V		F8V	F8V	1777	2015	606	1980	2017	011	047	1	V(C)WG	[0]

Примечание: * — ADS 7251 B = HIP 120005. Обозначения приведены в тексте. В последней колонке дана ссылка на статью, в которой получена эта орбита ([0] — если в настоящей работе; [1]= (Кияева et al., 2017); [2]= (Кияева et al., 2020); [3]= (Кияева et al., 2001); [4]= (Романенко, Измайлов, 2021); [5]= (Кияева, Измайлов, 2018); [6]= (Shakht et al., 2007); [7]= (Кияева, Романенко, 2020); [8]= (Shakht et al., 2020); [9]= (Романенко, Киселев, 2014); [10]= (Романенко, 2018); [11]= (Грошева, 2006); [12]= (Киселев et al., 2000); [13]= (Киселев et al., 2009); [14]= (Романенко, 2017); [15]= (Кияева, Горыня, 2015); [16]= (Shakht et al., 2017); [17]= (Grosheva, 2006); [18]= (Кіуаеva et al., 2021)).

а только увеличивали их ошибки. В тех случаях, где это было возможно, при вычислении внешней орбиты движение спутника учитывалось.

Результаты представлены на сайте (http://izmccd.puldb.ru/vds.htm) в виде электронных таблиц и Приложения, включающего комментарии к каждой звезде и графики, иллюстрирующие сравнение эфемерид с наблюдениями, а также область стабильных решений для семейств.

Здесь мы даем только табл.1, в которой представлены данные, характеризующие компоненты исследуемых здесь пар. ряды наблюдений и полученные решения по каждой звезде.

Обозначения: В колонках 1–3 даны номера пар (1 — по порядку, 2 — по каталогу Hipparcos (ESA SP-1200, 1997), 3 — по каталогу ADS (Aitken, Doolittle, 1932), 4 — компоненты, 5 - номер WDS (Mason et al., 2016), 6-9 - звездные величины и спектральныеклассы компонентов согласно WDS, 10 и 11 — спектральные классы компонентов, оцененные нами согласно эффективной температуре T_{eff} по данным Gaia DR2 (Gaia Collaboration et al., 2018) и монографии (Агекян, 1981) в предположении, что данный компонент является карликом (в противном случае полученный результат дан в скобках); в колонках 12 и 13 — начало и конец наблюдений по данным WDS (версия 2016г.), 14 — общее количество наблюдений в WDS, 15 и 16 — начало и конец пулковских наблюдений, 17 — число пулковских фотографических наблюдений, 18 — число пулковских ПЗС-наблюдений, 19 — число ПВД-орбит (k₀) или F — семейство, 20 — признаки по одной букве: М — наличие внутренней подсистемы (в скобках, если спутник нами предполагается, но не подтвержден), V — наличие лучевой скорости из наблюдений, С — наличие радиуса кривизны по наблюдениям базиса (в скобках, если по всей дуге, но по короткому базису не определяется), W — широкая пара (a > 100 a.e.), O — ПВД-орбита улучшена по программе ORBITX (Tokovinin, 1992), G — ПВД окончательно выбранной орбиты вычислены по наблюдениям и собственным движениям Gaia DR2, в колонке 21 — ссылка на статью, в которой получена эта орбита.

Отметим, что фотографические наблюдения на 26-дюймовом рефракторе в Пулкове закончились в 2007 году, а ПЗС-наблюдения начались в 1996, но в данной работе мы использовали только систематические ПЗС наблюдения с 2003 по 2019 год.

В табл. 2 представлены исходные данные для получения ПВД-орбиты. А именно: параметры видимого движения и дополнительные параметры, а также их ошибки.

В табл. 3 даны орбитальные элементы для 50 пар, их ошибки в зависимости от исходных параметров, ориентация полученных орбит в галактической системе координат, а также средневесовые значения (O-C), соответствующие всему ряду и наблюдению Gaia DR2. Назначение весов наблюдениям объясняется в статье (Кияева et al., 2017). Ошибки исходных данных соответствуют 1σ , тогда орбитальные элементы попадают в указанный диапазон ошибок с вероятностью 68%.

В табл. 4 представлены орбитальные элементы для 17 пар (семейства), соответствующие особым точкам, то есть имеющие минимальный период ($\beta = 0^{\circ}$), минимальный эксцентриситет и предельные периоды для надежных орбит семейств.

Здесь следует отметить особенность, свойственную алгоритму определения орбит по положению и скорости (см. монографии (Субботин, 1968) и (Холшевников, Титов, 2007)).

Прежде всего мы получаем большую полуось орбиты a согласно интегралу энергии по

формуле:

$$\frac{1}{a} = \frac{2}{r} - \frac{v^2}{k^2}$$
(4)

При значениях β , близких к β_{max} , когда орбита близка к параболической, погрешность определения *a* велика. Вычисляя затем эфемериды по найденной орбите, мы получаем ошибочное значение *r*:

$$r = a(1 - e\cos E) \tag{5}$$

Здесь e — эксцентриситет, E — эксцентрическая аномалия. Помимо неточного значения a на значение r влияет положение, которое спутник занимает на орбите в момент T_0 . Очевидно, что бОльшая неопределенность получается вблизи периастра. В таблицу 4 мы включаем только надежные решения, когда задача вычисления орбиты и ее эфемерид замыкается, и все орбиты семейства хорошо удовлетворяют наблюдаемому ряду.

В Приложении (на сайте izmccd.puldb) даны комментарии для каждой звезды и графики. В комментариях кратко изложена история исследования системы и обоснование данного результата. В графиках отражены ряды наблюдений, эфемериды орбит и направление движения по данным Gaia DR2 на момент 2015.5.

Представлены следующие зависимости: $\rho(t)$, $\theta(t)$ и y(x). График в картинной плоскости y(x) иногда представлен в двух видах: фрагмент дуги, охваченной наблюдениями, и полная орбита, охватывающая весь период. Тогда видно, сколь мала наблюденная дуга.

Для всех семейств, кроме того, графически представлена функциональная зависимость lg(a) = f(e) и определена область, где возможно влияние Галактики, а для визуальнотройных (ADS 48, ADS 7034 и ADS 10288)— область устойчивости так, как это сделано в работе (Кияева, Романенко, 2020).

3 Заключение

Представлены орбиты 67 широких пар визуально-двойных и кратных звезд, входящих в 64 системы. Однозначно получены орбиты для 33 пар, среди них 22 пары имеют большую полуось орбиты более 100 а.е. и периоды от 600 до 6000 лет. Для таких широких пар метод ПВД, в отличие от других методов, позволяет получить более надежные орбиты.

В течение 40 лет каждый исследователь из группы А.А.Киселева для определения ПВДорбит разрабатывал свои алгоритмы, соответствующие особенностям интересующих его объектов, в зависимости от имеющихся исходных данных. Для достижения однородности исследования и удобства в использовании создана единая программа, которая по данным табл.2 каждой пары вычисляет элементы орбиты с ошибками, ориентацию, эфемериды и невязки к наблюдениям (табл.3 и 4, а также данные для графиков). Эта программа может служить инструментом для определения ПВД-орбит еще не исследованных визуальнодвойных звезд Пулковской программы по мере поступления недостающих данных.

Благодарности

В настоящей статье используются данные каталогов WDS (Mason et al., 2016) и Gaia DR2 (Gaia Collaboration et al., 2018), авторы признательны их создателям. Работа выполнена при поддержке Российского фонда фундаментальных исследований (грант 20-02-00563 A).

Список литературы

- Agati J. L., Bonneau D., Jorissen A., Soulié E., Udry S., Verhas P., Dommanget J. Are the orbital poles of binary stars in the solar neighbourhood anisotropically distributed? // A&A. II 2015. 574. A6.
- Aitken R.G., Doolittle Eric. New General Catalogue of Double Stars within 120⁰ of the North Pole. XII 1932. Carnegie Institution of Washington publication (Washington D.C.1932). 0.
- Allen C. Allen's astrophysical quantities. Fourth edition. XII 1999. A.N. Cox editor, Springer(1999). 739.
- Bressan Alessandro, Marigo Paola, Girardi Léo., Salasnich Bernardo, Dal Cero Claudia, Rubele Stefano, Nanni Ambra. PARSEC: stellar tracks and isochrones with the PAdova and TRieste Stellar Evolution Code // MNRAS. XI 2012. 427, 1. 127–145.
- ESA SP-1200. The Hipparcos and Tycho Catalogues. 1997.
- Gaia Collaboration, Brown A. G. A., Vallenari A., Prusti T., de Bruijne J. H. J., Babusiaux C., Bailer-Jones C. A. L., Biermann M., Evans D. W., Eyer L., Jansen F., Jordi C., Klioner S. A., Lammers U., Lindegren L., Luri X., Mignard F., Panem C., Pourbaix D., Randich S., Sartoretti P., Siddiqui H. I., Soubiran C., van Leeuwen F., Walton N. A., Arenou F., Bastian U., Cropper M., Drimmel R., Katz D., Lattanzi M. G., Bakker J., Cacciari C., Castañeda J., Chaoul L., Cheek N., De Angeli F., Fabricius C., Guerra R., Holl B., Masana E., Messineo R., Mowlavi N., Nienartowicz K., Panuzzo P., Portell J., Riello M., Seabroke G. M., Tanga P., Thévenin F., Gracia-Abril G., Comoretto G., Garcia-Reinaldos M., Teyssier D., Altmann M., Andrae R., Audard M., Bellas-Velidis I., Benson K., Berthier J., Blomme R., Burgess P., Busso G., Carry B., Cellino A., Clementini G., Clotet M., Creevey O., Davidson M., De Ridder J., Delchambre L., Dell'Oro A., Ducourant C., Fernández-Hernández J., Fouesneau M., Frémat Y., Galluccio L., García-Torres M., González-Núñez J., González-Vidal J. J., Gosset E., Guy L. P., Halbwachs J. L., Hambly N. C., Harrison D. L., Hernández J., Hestroffer D., Hodgkin S. T., Hutton A., Jasniewicz G., Jean-Antoine-Piccolo A., Jordan S., Korn A. J., Krone-Martins A., Lanzafame A. C., Lebzelter T., Löffler W., Manteiga M., Marrese P. M., Martín-Fleitas J. M., Moitinho A., Mora A., Muinonen K., Osinde J., Pancino E., Pauwels T., Petit J. M., Recio-Blanco A., Richards P. J., Rimoldini L., Robin A. C., Sarro L. M., Siopis C., Smith M., Sozzetti A., Süveges M., Torra J., van Reeven W., Abbas U., Abreu Aramburu A., Accart S., Aerts C., Altavilla G., Álvarez M. A., Alvarez R., Alves J., Anderson R. I., Andrei A. H., Anglada Varela E., Antiche E., Antoja T., Arcay B., Astraatmadja T. L., Bach N., Baker S. G., Balaguer-Núñez L., Balm P., Barache C., Barata C., Barbato D., Barblan F., Barklem P. S., Barrado D., Barros M., Barstow M. A., Bartholomé Muñoz S., Bassilana J. L., Becciani U., Bellazzini M., Berihuete A., Bertone S., Bianchi L., Bienaymé O., Blanco-Cuaresma S., Boch T., Boeche C., Bombrun A., Borrachero R., Bossini D., Bouquillon S., Bourda G., Bragaglia A., Bramante L., Breddels M. A., Bressan A., Brouillet N., Brüsemeister T., Brugaletta E., Bucciarelli B., Burlacu A., Busonero D., Butkevich A. G., Buzzi R., Caffau E., Cancelliere R., Cannizzaro G., Cantat-Gaudin T., Carballo R., Carlucci T., Carrasco J. M., Casamiquela L., Castellani M., Castro-Ginard A., Charlot P., Chemin L., Chiavassa A., Cocozza G., Costigan G., Cowell S., Crifo F., Crosta

M., Crowley C., Cuypers J., Dafonte C., Damerdji Y., Dapergolas A., David P., David M., de Laverny P., De Luise F., De March R., de Martino D., de Souza R., de Torres A., Debosscher J., del Pozo E., Delbo M., Delgado A., Delgado H. E., Di Matteo P., Diakite S., Diener C., Distefano E., Dolding C., Drazinos P., Durán J., Edvardsson B., Enke H., Eriksson K., Esquej P., Eynard Bontemps G., Fabre C., Fabrizio M., Faigler S., Falcão A. J., Farràs Casas M., Federici L., Fedorets G., Fernique P., Figueras F., Filippi F., Findeisen K., Fonti A., Fraile E., Fraser M., Frézouls B., Gai M., Galleti S., Garabato D., García-Sedano F., Garofalo A., Garralda N., Gavel A., Gavras P., Gerssen J., Geyer R., Giacobbe P., Gilmore G., Girona S., Giuffrida G., Glass F., Gomes M., Granvik M., Guequen A., Guerrier A., Guiraud J., Gutiérrez-Sánchez R., Haigron R., Hatzidimitriou D., Hauser M., Haywood M., Heiter U., Helmi A., Heu J., Hilger T., Hobbs D., Hofmann W., Holland G., Huckle H. E., Hypki A., Icardi V., Janßen K., Jevardat de Fombelle G., Jonker P. G., Juhász A. L., Julbe F., Karampelas A., Kewley A., Klar J., Kochoska A., Kohley R., Kolenberg K., Kontizas M., Kontizas E., Koposov S. E., Kordopatis G., Kostrzewa-Rutkowska Z., Koubsky P., Lambert S., Lanza A. F., Lasne Y., Lavigne J. B., Le Fustec Y., Le Poncin-Lafitte C., Lebreton Y., Leccia S., Leclerc N., Lecoeur-Taibi I., Lenhardt H., Leroux F., Liao S., Licata E., Lindstrøm H. E. P., Lister T. A., Livanou E., Lobel A., López M., Managau S., Mann R. G., Mantelet G., Marchal O., Marchant J. M., Marconi M., Marinoni S., Marschalkó G., Marshall D. J., Martino M., Marton G., Mary N., Massari D., Matijevič G., Mazeh T., McMillan P. J., Messina S., Michalik D., Millar N. R., Molina D., Molinaro R., Molnár L., Montegriffo P., Mor R., Morbidelli R., Morel T., Morris D., Mulone A. F., Muraveva T., Musella I., Nelemans G., Nicastro L., Noval L., O'Mullane W., Ordénovic C., Ordénez-Blanco D., Osborne P., Pagani C., Pagano I., Pailler F., Palacin H., Palaversa L., Panahi A., Pawlak M., Piersimoni A. M., Pineau F. X., Plachy E., Plum G., Poggio E., Poujoulet E., Prša A., Pulone L., Racero E., Ragaini S., Rambaux N., Ramos-Lerate M., Regibo S., Reylé C., Riclet F., Ripepi V., Riva A., Rivard A., Rixon G., Roegiers T., Roelens M., Romero-Gómez M., Rowell N., Royer F., Ruiz-Dern L., Sadowski G., Sagristà Sellés T., Sahlmann J., Salgado J., Salguero E., Sanna N., Santana-Ros T., Sarasso M., Savietto H., Schultheis M., Sciacca E., Seqol M., Seqovia J. C., Ségransan D., Shih I. C., Siltala L., Silva A. F., Smart R. L., Smith K. W., Solano E., Solitro F., Sordo R., Soria Nieto S., Souchay J., Spagna A., Spoto F., Stampa U., Steele I. A., Steidelmüller H., Stephenson C. A., Stoev H., Suess F. F., Surdej J., Szabados L., Szegedi-Elek E., Tapiador D., Taris F., Tauran G., Taylor M. B., Teixeira R., Terrett D., Teyssandier P., Thuillot W., Titarenko A., Torra Clotet F., Turon C., Ulla A., Utrilla E., Uzzi S., Vaillant M., Valentini G., Valette V., van Elteren A., Van Hemelryck E., van Leeuwen M., Vaschetto M., Vecchiato A., Veljanoski J., Viala Y., Vicente D., Vogt S., von Essen C., Voss H., Votruba V., Voutsinas S., Walmsley G., Weiler M., Wertz O., Wevers T., Wyrzykowski Ł., Yoldas A., Žerjal M., Ziaeepour H., Zorec J., Zschocke S., Zucker S., Zurbach C., Zwitter T. Gaia Data Release 2. Summary of the contents and survey properties // A&A. VIII 2018. 616. A1.

- Girardi L., Bressan A., Bertelli G., Chiosi C. Evolutionary tracks and isochrones for low- and intermediate-mass stars: From 0.15 to 7 M_{sun}, and from Z=0.0004 to 0.03 // A&AS. II 2000. 141. 371–383.
- *Grosheva E. A.* Analysis of periodic perturbations in the multiple system ADS 15571 // Astrophysics. VII 2006. 49, 3. 397–404.

- Hale A. Orbital CoPlanetary in Solar-Type Binary Systems: Implications for Planetary System Formation and Detection // AJ. I 1994. 107. 306.
- Izmailov I. S., Roshchina E. A. Astrometric observations of visual binaries using 26-inch refractor during 2007-2014 at Pulkovo // Astrophysical Bulletin. IV 2016. 71, 2. 225–231.
- Izmailov I.S., Khovricheva M.L., Khovrichev M.Yu., Kiyaeva O.V., Khrutskaya E.V., Romanenko L.G., Grosheva E.A., Maslennikov K.L., Kalinichenko O.A. Astrometric CCD observations of visual double stars at the Pulkovo Observatory // Astronomy Letters. V 2010. 36. 349–354.
- Izmailov I.S., Roshchina E.A., Kiselev A.A., Kiseleva T.P., Kalinichenko O.A., Bykov O.P., Kiyaeva O.V., Romanenko L.G., Shakht N.A., Maslennikov K.L., Vasil'eva T.A. Photographic observations of visual double stars at Pulkovo: Digitization, measurement, and calibration // Astronomy Letters. I 2016. 42. 41–54.
- Izmailov Igor, Rublevsky Aleksey, Apetyan Arina. Astrometric observations of visual binaries using 26-inch refractor at Pulkovo Observatory during 2014-2019 // Astronomische Nachrichten. X 2020. 341, 8. 762–769.
- Kiselev A.A., Kiyaeva O.V., Izmailov I.S., Romanenko L.G., Kalinichenko O.A., Vasil'kova O.O., Vasil'eva T.A., Shakht N.A., Gorshanov D.L., Roschina E.A. Pulkovo catalog of relative positions and motions of visual double and multiple stars from photographic observations with the 26-inch refractor in 1960-2007 // Astronomy Reports. II 2014. 58. 78–97.
- Kiyaeva Olga V., Khovritchev Maxim Yu., Kulikova Agrippina M., Narizhnaya Natalya V., Vasilyeva Tatyana A., Apetyan Arina A. Does ADS 9346 have a low-mass companion? // Research in Astronomy and Astrophysics. XII 2021. 21, 11. 291.
- Mason B.D., Wycoff G.L., Hartkopf W.I., Douglass G.G., Worley C.E. The Washington Visual Double Star Catalog. III 2016. Washington: US Naval Observatory, VizieR Online Data Catalog. 0.
- Shakht N. A., Gorshanov D. L., Izmailov I. S., Romanenko L. G. Study of the Binary Star ADS 7251 by Observations on the 65-cm Refractor at Pulkovo from 1962-2018 // Astrophysics. XI 2020. 63, 4. 511–522.
- Shakht N. A., Gorshanov D. L., Vasilkova O. O. Improved Orbit and Mass of the Binary Star 61 Cyg Based on Photographic Observations at Pulkovo // Astrophysics. XII 2017. 60, 4. 507–519.
- Shakht N. A., Grosheva E. A., Gorshanov D. L. Determination of the orbits and the estimation of the masses of ADS 7251 and ADS 5983 (Delta Gem) // Binary Stars as Critical Tools & Tests in Contemporary Astrophysics. 240. VIII 2007. 119.
- Tokovinin A. Speckle Spectroscopic Studies of Late-Type Stars // IAU Colloq. 135: Complementary Approaches to Double and Multiple Star Research. 32. I 1992. 573. (Astronomical Society of the Pacific Conference Series).
- Tokovinin Andrei. The Updated Multiple Star Catalog // ApJS. III 2018. 235, 1. 6.

- *Tokovinin Andrei*. Architecture of Hierarchical Stellar Systems and Their Formation // Universe. IX 2021. 7, 9. 352.
- Агекян Т.А. Звезды, галактики, Метагалактика. 1981. Москва: Наука. 416 стр.
- *Грошева Е.А.* Визуально-двойные звезды околополярной области по наблюдениям на 26дюймовом рефракторе в Пулкове - канд.дисс. 2006. С.-Пб: Главн. астрон. обсерв. РАН. 116 стр.
- Киселев А.А., Кияева О.В. Определение орбиты визуально-двойной звезды методом параметров видимого движения из наблюдений короткой дуги. // Астрон. журн. XII 1980. 57. 1227.
- Киселев А.А., Быков О.П. Определение орбиты спутника по одной фотографии со многими экспозициями // Астрон. журн. 1973. 50. 1298–1308.
- Киселев А.А., Романенко Л.Г., Измайлов И.С., Грошева Е.А. Новые орбиты 9 визуальнодвойных звезд, выведенные методом параметров видимого движения. // Известия ГАО в Пулкове. 2000. 214. 239–254.
- Киселев А.А., Романенко Л.Г., Шахт Н.А., Кияева О.В., Грошева Е.А., Измайлов И.С. Динамическое исследование широких пар двойных звезд в окрестностях Солнца // Известия Главной астрономической обсерватории в Пулкове. Труды всероссийской астрометрической конференции «ПУЛКОВО – 2009». 2009. 219. 135–478.
- Кияева О.В., Горыня Н.А. Орбита близкой визуально-двойной звезды GJ 767 // Письма в Астрон. журн. 2015. 41. 455–463.
- Кияева О.В., Жучков Р.Я., Измайлов И.С. Исследование относительного движения в системе иерархической тройной звезды ADS 48 на основе наблюдений Gaia DR2 и 26дюймового рефрактора Пулковской обсерватории // Астрофиз. Бюллетень. V 2020. 75. 478–491.
- Кияева О.В., Измайлов И.С. Астрометрическое исследование двух кратных звезд: ADS 2668 и ADS 8236 // Письма в Астрон. журн. 2018. 44. 857–867.
- Кияева О.В., Киселев А.А., Поляков Е.В., Рафальский В.Б. Астрометрическое исследование тройной системы ADS 48 // Астрон. журн. 2001. 27. 456–463.
- Кияева О.В., Романенко Л.Г. Первые орбиты шести широких двойных звезд в окрестности Солнца на основе наблюдений Gaia DR2 // Письма в Астрон. журн. 2020. 46. 590–606.
- Кияева О.В., Романенко Л.Г., Жучков Р.Я. Новые орбиты широких визуально-двойных звезд // Письма в Астрономический журнал. 2017. 43. 354–369.
- *Романенко Л.Г.* 17 Лебедя ABFG: динамическое исследование // Астрон. журн. 2017. 94. 224–239.
- Романенко Л.Г. Улучшение орбит 5 широких визуально-двойных звезд пулковской программы исследований. // Известия Главной астрономической обсерватории в Пулкове. Труды всероссийской астрометрической конференции «ПУЛКОВО – 2018». 2018. 225. 241–246.

- Романенко Л.Г., Измайлов И.С. Улучшение орбит четырех визуально-двойных звезд с использованием данных Gaia DR2 и наблюдений 26-дюймового рефрактора Пулковской обсерватории // Астрон. журн. Х 2021. 98. 239–254.
- *Романенко Л.Г., Киселев А.А.* Орбиты четырех визуально-двойных звезд, полученные по короткой дуге. // Астрон.журн. 2014. 91. 47–56.
- *Субботин М.Ф.* Введение в теоретическую астрономию. 1968. Москва: Наука, Главн. редакция физ.-мат. литературы. 800 стр.
- *Холшевников К.В., Титов В.Б.* Задача двух тел. Учебное пособие. 2007. СПб: СПбГУ. 178 стр.

The orbits of visual binary and multiple stars obtained by the Apparent Motion Parameters method during the last 40 years

L.G. Romanenko^{1,*}, O.V. Kiyaeva¹, I.S. Izmailov¹, N.A. Shakht¹, D.L. Gorshanov¹

 $^{1} {\rm The \ Central \ Astronomical \ Observatory \ of \ the \ Russian \ Academy \ of \ Sciences \ at \ Pulkovo} \\ ^{*} e-mail: \underline{lrom1962@list.ru}$

November 2022

Abstract

Summed many years of work at Pulkovo, the orbits of 67 wide pairs of visual double and multiple stars (included in 64 systems) which were obtained by the Apparent Motion Parameters (AMP) method are presented. This short arc orbit determination method uses the most reliable astrometric and astrophysical data corresponding to one instant of time. The rest of the observations accumulated in the world serve to control the quality of the orbit and refine some parameters. All early determined AMP-orbits were compared with new observations, part of them recalculated, new orbits added. For the stars of Pulkovo program of observations with a 26-inch refractor, the data from the Gaia DR2 catalog were analised. The orbits of 16 stars were calculated on these data. The direction of the motion derived from Gaia DR2 at the instant 2015.5 contradicts to the series of all observations for 20 pairs from 67. The probable reason is in the presence of inner subsystems. The orientation of the obtained orbits in the Galaxy frame is also given.