Динамическое исследование кратной звезды ADS 9173 AB

О.В. Кияева¹, И.С. Измайлов¹, Н.В. Нарижная¹, Л.Г. Романенко¹

 1 ГАО РАН

Июнь 2023

Аннотация

Звезда ADS 9173=WDS 14135+5147=Hip 69483 является сложной системой. У компонента В есть спектроскопический спутник, орбита которого с периодом 4.9 года известна с 1986 года. Телескоп Gaia обнаружил далекую слабую пару на расстоянии более 100" относительно яркой пары AB. В нашей статье мы исследуем движение в яркой паре на основе многолетних наблюдений на 26-дюймовом рефракторе Пулковской обсерватории. Методом параметров видимого движения (ПВД) вычислена орбита пары AB с периодом 6306 лет. По невязкам на основе однородных ПЗС-наблюдений до 2023 года на 26-дюймовом рефракторе определена астрометрическая орбита, согласующаяся со спектроскопической. Оставшиеся вторичные невязки показывают волну с периодом приблизительно 20 лет, причины которой обсуждаются.

Введение

При исследовании процесса образования звезд и экзопланет, дальнейшей динамической эволюции звездных групп и систем экзопланет, важно уделять внимание двойным и кратным системам. Наблюдения в диапазоне от оптического до сантиметрового свидетельствуют о том, что кратные системы из двух или более тел являются нормой на всех этапах звездной эволюции. Широко признано, что множественные системы возникают в результате коллапса и фрагментации облачных ядер, несмотря на тормозящее влияние магнитных полей. Этот факт отмечается во многих работах посвященных этим темам (Bally и др., 2014). Поиск кратных систем поэтому является насущной наблюдательной задачей. Особенно когда речь идет об изучении систем экзопланет (Mugrauer, 2019).

Для Пулковской обсерватории наблюдение двойных и кратных звезд является традиционной темой еще со времен В. Я. Струве. В настоящее время продолжаются наблюдения на 26дюймовом рефракторе и поиск возможных внутренних подсистем (Zakhozhay, Gnedin и Shakht, 2010; Grosheva, 2006; Olga V. Kiyaeva, Khovritchev и др., 2021). Данная статья продолжает серию исследований, посвященных ADS 9173 (О. V. Kiyaeva, 2006; Olga V. Kiyaeva и Zhuchkov, 2017) на основе фотографических и ПЗС-наблюдений на 26-дюймовом рефракторе.

В работе (О. V. Кіуаеva, 2006) методом ПВД была впервые определена предварительная орбита пары AB на базе фотографических наблюдений 1982–2004 гг, и сделана попытка по невязкам получить астрометрическую орбиту, согласованную со спектроскопической орбитой фотоцентра. Последняя была получена на основе 70-летних наблюдений лучевой скорости еще в 1986 году (Bakos, 1986). Из спектроскопической орбиты были зафиксированы 3 динамических параметра: период P, эксцентриситет e и момент прохождения через периастр T. Астрометрическая орбита позволяет определить ориентацию плоскости орбиты (угол наклона i и долготу восходящего узла Ω). Контролем согласования орбит является независимо полученный спектроскопически и

^{*}e-mail:kiyaeva@list.ru

астрометрически общий параметр — долгота периастра от восходящего узла ω . Точности фотографических наблюдений было недостаточно, чтобы получить надежное согласие, хотя присутствие спутника в позиционных наблюдениях было замечено. Кроме того, было замечено возмущение по склонению с периодом более 13 лет.

В работе (Olga V. Kiyaeva и Zhuchkov, 2017) по фотографическим и ПЗС-наблюдениям 2003– 2012 гг была определена предварительная орбита возможного спутника с периодом 20 лет, но при этом движение пары AB на участке 1982–2012 получилось перпендикулярно картинной плоскости в направлении ρ , так как $\dot{\theta} = 0.0002 \pm 0.0010 \approx 0^{\circ}$ /год, что не подтверждается 200-летними наблюдениями. Получить удовлетворительную орбиту пары AB с такими параметрами видимого движения не удалось.

В настоящее время телескоп Gaia обнаружил по общему параллаксу еще одну пару слабых звезд ($m \approx 15$) Cab малой массы (см. каталог MSC (Tokovinin, 2018)) на расстоянии 114". В каталоге Gaia DR3 (Gaia Collaboration, 2022) нет ни параллакса, ни собственных движений для компонента В по причине низкой точности из-за внутренней подсистемы, а также нет лучевой скорости компонента А. Возможно, причиной отсутствия данных является то, что звезды яркие, и есть проблемы с определением лучевых скоростей для звезд спектрального класса A (согласно каталогу WDS (Mason и др., 2016): $m_A = 4.57^m$, $Sp_A = A7V$, $m_B = 6.81^m$, $Sp_B = F1V$).

В данной работе по всему ряду наблюдений определена орбита пары AB, а по невязкам относительно нее определена астрометрическая орбита компонента B, согласованная со спектроскопической орбитой в пределах ошибок. Обсуждается вопрос о достоверности второго спутника с периодом 20 лет, который проявляется в остаточных невязках.

1 Наблюдения

Яркая пара ADS 9173 AB была открыта Вильямом Гершелем в 1779 году, но самыми надежными ранними наблюдениями, входящими в каталог WDS, являются: наблюдение В.Я.Струве 1832 года, полученное по 7 индивидуальным положениям, и наблюдение О.В.Струве 1847 года, полученное по 11 индивидуальным положениям. Всего в WDS (версия 2016г.) 192 наблюдения 1779–2015гг. За это время расстояние между компонентами изменилось только на 1", а позиционный угол — на 1° (см. рис.1). Чтобы уменьшить большой разброс, вызванный влиянием возможных внутренних подсистем, выполнено усреднение всех наблюдения в скользящем окне 20 лет. После 2000 года мы учитывали только наши однородные наблюдения. В дальнейшем для определения орбиты внешней пары мы использовали именно этот ряд 1831–2010 (62 положения).

В Пулковской обсерватории на 26-дюймовом рефракторе звезда наблюдается с 1982 года. Имеется 48 фотографических наблюдений 1982–2004 гг, измеренных на сканере (Kiselev, O. V. Kiyaeva и др., 2014), и 71 ПЗС-наблюдение 2003–2019 гг (см. Izmailov, Rublevsky и Apetyan, 2020). Последние 13 ПЗС- наблюдений 2020–2023 гг представлены в данной работе. Обнаружена систематическая разность по ρ : Фото-ПЗС=50 мсд. Эта поправка внесена в ряд фотографических наблюдений. Сравнение объединенного ряда с общемировыми наблюдениями из WDS не выявило систематических расхождений.

Все наблюдения представлены на рис. 1. Пулковские наблюдения представлены отдельно на рис. 2.

На графике $\rho(t)$ сглаженный ряд демонстрирует явно выраженную волну на участке 1830– 1940 гг, однако дальше она никак не проявляется. Этот пример наблюдательной селекции показывает, что для подтверждения астрометрической орбиты, полученной по невязкам, одной волны мало, необходим внимательный анализ всех имеющихся данных.

2 ПВД-орбита пары А-В

Метод ПВД (Kiselev и О. V. Kiyaeva, 1980) предназначен для определения первоначальных орбит широких визуально-двойных звезд с большим периодом обращения по положению и скорости в

Рис. 1: Весь ряд наблюдений ADS 9173 AB. Обозначения: зеленые кружки — наблюдения из WDS (Mason и др., 2016), синие треугольники — сглаженный ряд, красные треугольники — наблюдения Вильгельма и Отто Струве, желтые ромбы — космические наблюдения Hipparcos (из WDS), Gaia DR2 (Gaia Collaboration и др., 2018) и Gaia DR3 (Gaia Collaboration, 2022), красные крестики — пулковские фотографические наблюдения (Kiselev, O. V. Kiyaeva и др., 2014), сиреневые звездочки — ПЗС (см. Izmailov, Rublevsky и Ареtyan, 2020), линия — эфемерида орбиты широкой пары AB.

Рис. 2: Ряд наблюдений на пулковском 26-дюймовом рефракторе. Обозначения те же, что на рис. 1. Зависимость $\theta(t)$ показывает возмущение с периодом около 20 лет.

Рис. 3: Зависимости $S(\beta)$ и $S(\Delta V_r)$.

один момент времени на основе результатов наблюдений, полученных разными доступными методами. Это параметры видимого относительного движения (ПВД) в момент T_{\circ} : расстояние между компонентами (ρ), позиционный угол (θ), видимое относительное движение (μ) и позиционный угол направления видимого движения (ψ), радиус кривизны (ρ_c).

Кроме того, необходимыми данными являются параллакс p_t (для связи линейных и угловых величин), относительная лучевая скорость компонентов ΔV_r , получаемая из спектроскопических наблюдений (для вычисления вектора пространственной скорости спутника В относительно главной звезды А) и оценка суммы масс компонентов ΣM согласно данным о физических свойствах звезд.

Если удается определить все пять параметров, включая радиус кривизны, то расстояние между компонентами r в астрономических единицах вычисляется по формуле

$$r^{3} = k^{2} \frac{\rho \rho_{c}}{\mu^{2}} |\sin(\theta - \psi)| \tag{1}$$

где $k^2 = 4\pi^2 \Sigma M$ — динамическая постоянная, если измерять расстояние в а.е., время в годах, массу в единицах массы Солнца.

Тогда получаем два вектора положения, которые соответствуют положению вторичного компонента симметрично относительно картинной плоскости, а, следовательно, и две орбиты, каждую из которых характеризует угол β между пространственным положением спутника и его проекцией на картинную плоскость.

$$\beta = \pm \arccos \frac{\rho}{rp_t} \tag{2}$$

У обеих орбит одинаковые большие полуоси и периоды, но отличаются остальные параметры.

Точнее всего ПВД получаются из однородных наблюдений (базиса), выполненных на одном телескопе, для исключения инструментальных систематических ошибок. Все остальные наблюдения используются для контроля и, при необходимости, для уточнения неизвестных исходных данных.

В нашем случае, как видно из рисунка 2, наиболее точным является ряд ПЗС-наблюдений. Однако движение звезды слишком медленное, поэтому невозможно получить параметры видимого движения только по данному однородному ряду, искаженному влиянием возможных спутников. ПВД вычислены на момент 1950.0 по всему сглаженному ряду. Сумму масс компонентов мы взяли из каталога MSC. К сожалению, невозможно определить радиус кривизны, и неуверенно получена относительная лучевая скорость.

В работе (Bakos, 1986) для компонента В определена $V_{r\gamma} = -21.5$ км/с и приблизительно оценена $V_{rA} = -23$ км/с. По согласию с удаленными наблюдениями мы определили угол $\beta = -11^{\circ}$ и уточнили $\Delta V_r = +1.7$ км/с. В качестве удаленных наблюдений использовались сглаженные наблюдения 1831–1940 и 2000–2010гг.

Для выбора наилучшего решения мы используем алгоритм, предложенный в работе (О. V. Kiyaeva, 1983), где сравниваются не непосредственно наблюдения и эфемериды, а элементы Тиле-Иннеса A, B, F, G, вычисленные двумя путями: по геометрическим элементам ПВД-орбиты $(a, i, \omega$ и Ω) и в результате решения методом наименьших квадратов системы линейных уравнений, где наряду с наблюдаемыми координатами используются динамические элементы ПВД-орбиты (P, T и e). В идеале эти значения должны совпадать. Мы ищем минимум функции сравнения S в зависимости от разности элементов Тиле-Иннеса.

$$S = (\Delta A^2 + \Delta B^2 + \Delta F^2 + \Delta G^2)^{1/2}$$

$$\tag{3}$$

Зависимости $S(\beta)$ и $S(\Delta V_r)$ представлены на рис. 3.

Рис. 4: Орбита внешней пары А-В в картинной плоскости. Косой крест — главный компонент А, остальные обозначения те же, что на рис. 1.

наолица 1. неходные данные для определения пърд оронты нары нъ.									
T_0 , год	rho,''	$ heta,^\circ$	$\mu,\mathrm{mas/yr}$	$\psi,^{\circ}$	$\Delta V_r,\mathrm{km/s}$	p_t , mas	$\Sigma M, M_{\odot}$		
1950.0	13.335	235.897	5.029	220.70	+1.7	20.153	4.2		
	$\pm.010$	± 0.023	$\pm .193$	± 1.28	± 0.2	± 0.009			

Таблица 1: Исходные данные для определения ПВД-орбиты пары АВ.

Согласно данному критерию, уверенно получаем лучшее решение, соответствующее $\beta = -11^{\circ} \pm 7^{\circ}$. Если пользоваться критерием минимальной дисперсии по всему ряду наблюдений, второе решение, соответствующее $\beta = +11^{\circ}$, также хорошо проходит через весь ряд. Однако, сравнивая элементы Тиле-Иннеса, мы учитываем не только позиционные наблюдения, но и элементы ПВД-орбиты Т и е, которые различаются для разных решений. Поэтому правильным мы считаем одно решение, которое соответствует $\beta = -11^{\circ}$.

Исходные данные для получения ПВД-орбиты представлены в табл. 1, элементы орбиты — в табл. 2.

Ошибки орбитальных элементов определяются суммарным изменением каждого элемента при изменении всех исходных параметров на величины их ошибок. Так как полученный диапазон значений элемента несимметричен относительно вычисленного параметра, мы приводим неопределенность в обе стороны. На рис. 4 — орбита внешней пары в картинной плоскости.

3 Астрометрическая орбита внутренней пары Ba-Bb

Для определения астрометрической орбиты компонента В мы используем только ПЗС-наблюдения 2003–2023 гг. За это время пара совершила 4 оборота. В табл. 3 представлены наблюдения и (O-C) по прямому восхождению (dx1) и по склонению (dy1) относительно орбиты пары AB, которые являются исходными данными для вычисления астрометрической орбиты. Вес наблюдения опре-

	Таблица 2: Элементы ПВД-орбиты пары АВ.											
	a,''	P, год	е	$\omega,^{\circ}$	$i,^{\circ}$	$\Omega,^{\circ}$	T, год					
	11.10	6306.	.44	208.0	99.2	234.1	6515.					
+	1.56	1362.	.10	16.5	1.1	.2	119.					
-	.96	800.	.19	16.6	1.4	1.7	611.					

Во второй и третьей строке — неопределенности, определяющие диапазон для каждого параметра.

деляется ошибкой *Errp*.

Орбита фотоцентра определена стандартным образом. Решаем систему уравнений:

$$dx_{phase} = dx_0 + BX_{phase} + GY_{phase} \tag{4}$$

$$dy_{phase} = dy_0 + AX_{phase} + FY_{phase} \tag{5}$$

где dx_{phase} и dy_{phase} — исходные невязки, зависящие от фазы относительно периода, которая равна дробной части $(t - T_0)/P$; $X_{phase} = cos(E_{phase}) - e$, $Y_{phase} = \sqrt{1 - e^2}sin(E_{phase})$ — орбитальные координаты, зависящие от орбитальных элементов P, T и e, которые в нашем случае известны с высокой точностью из спектроскопической орбиты (Bakos, 1986), E — истинная аномалия в момент t. Отметим, что момент прохождения через периастр T пересчитан с учетом того, что с 1927 по 2010гг звезда совершила 17 оборотов.

Определяем координаты центра масс dx_0 и dy_0 на момент $T_0 = 2012.0$ и элементы Тиле-Иннеса A, B, F, G, которым соответствуют элементы орбиты (a, i, ω, Ω) . Ошибки последних относительно вычисленного решения определены методом Монте-Карло, число испытаний равно 30, исходные невязки искажались с заданной дисперсией 15 mas, что соответствует точности ПЗСнаблюдений. Эти ошибки немного превосходят ошибки среднего решения, разность модельных и средних элементов попадает в данный диапазон.

Результаты представлены в табл. 4 и на рис. 5.

Невязки усреднены по фазе в скользящем окне, равном $0.05P \approx 0.25$ года, ошибки каждого положения являются внешними и определяют сходимость внутри фазы. Эфемериды орбиты внутренней пары Ba-Bb по сравнению со всеми исходными данными также представлены на рис. 6.

Долгота периастра от восходящего узла ω определяется независимо из спектроскопической и из астрометрической орбиты, а потому этот параметр можно считать контролем согласованности орбит. В пределах ошибки значения ω совпадают. Таким образом, мы дополнили спектроскопическую орбиту недостающими параметрами i и Ω .

4 А есть ли еще спутник в данной системе?

Рассмотрим невязки пулковских ПЗС-наблюдений. После учета орбиты внешней пары AB равновесные среднеквадратические отклонения $\sigma_x = 42.8 \text{ mas}$, $\sigma_y = 42.5 \text{ mas}$, после учета астрометрической орбиты Ba-Bb они существенно уменьшились ($\sigma_x = 30.8 \text{ mas}$, $\sigma_y = 19.1 \text{ mas}$). Эти невязки (dx2, dy2) также представлены в табл. 3.

На рис. 7 к ним добавлены также невязки пулковских фотографических наблюдений после учета обеих орбит. Видно, что на графике dy2(t) ход фотографических и ПЗС невязок на участках 1985–1996 и 2005–2012гг повторяется. Характерный тренд позволил нам предположить присутствие спутника с периодом приблизительно 20 лет. К сожалению, звезда мало наблюдалась фотографически после 1996 года, и не было ПЗС-наблюдений в 2012–2015 гг. До 2019 года ПЗС-наблюдения не противоречат данному предположению, но последние наблюдения 2020, 2021 и 2023гг заставили нас усомниться.

Кроме того, на рисунке 5 мы видим, что положения вблизи близких фаз отличаются от естественного случайного разброса, и указывают на некоторый систематический ход.

Поэтому в настоящий момент мы пришли к выводу, что в системе есть короткопериодический спутник (возможно, не один), который мы обнаружить уверенно не можем, а 20-летний ход вызван наблюдательной селекцией или является кратным для нескольких спутников. Если сравнить с нашей Солнечной системой, то посторонний наблюдатель обнаружил бы, скорее всего, период 60 лет (влияние Юпитера и Сатурна).

Таким образом, данный вопрос пока остается открытым. ПЗС-наблюдения ADS 9173 на 26дюймовом рефракторе продолжаются. Необходимы также наблюдения лучевых скоростей и высокоточные спекл-интерферометрические наблюдения.

Рис. 5: Сравнение эфемерид астрометрической орбиты Ba-Bb с невязками ПЗС-наблюдений относительно орбиты AB, усредненными по фазе.

Рис. 6: Сравнение эфемерид астрометрической орбиты Ba-Bb с невязками индивидуальных ПЗСнаблюдений относительно орбиты AB.

Рис. 7: Остаточные невязки пулковских фотографических (красные открытые кружки) и ПЗС (черные кружки) наблюдений после учета обеих орбит: АВ и Ва-Вb

Список литературы

- Bally, John и др. (2014). Outflows, Dusty Cores, and a Burst of Star Formation in the North America and Pelican Nebulae. AJ 148.6, c. 120.
- Mugrauer, M. (2019). Search for stellar companions of exoplanet host stars by exploring the second ESA-Gaia data release. MNRAS 490.4, c. 5088-5102.
- Zakhozhay, V. A., Yu. N. Gnedin μ N. A. Shakht (2010). Contributions of the Pulkovo and Kharkiv Scientific Schools to the search for exoplanets and low-mass dark satellites of stars. Astrophysics 53.4, c. 575–591.
- Grosheva, E. (2006). Analysis of periodic perturbations in the multiple system ADS 15571. Astrophysics 49.3, c. 397–404.
- Kiyaeva, Olga V., Maxim Yu. Khovritchev и др. (2021). Does ADS 9346 have a low-mass companion? Research in Astronomy and Astrophysics 21.11, c. 291.
- Kiyaeva, O. V. (2006). Astrometric study of the triple star ADS 9173. Astronomy Letters 32.12, c. 836–844.
- Kiyaeva, Olga V. и Roman Ya. Zhuchkov (2017). Dynamical investigations of the multiple stars. Open Astronomy 26.1, c. 64—71.
- Bakos, G. A. (1986). Spectroscopic orbital elements of kappa2 Bootis B. AJ 91, c. 1416–1417.
- Tokovinin, Andrei (2018). The Updated Multiple Star Catalog. ApJS 235.1, c. 6.
- Gaia Collaboration (2022). VizieR Online Data Catalog: Gaia DR3 Part 1. Main source. VizieR Online Data Catalog, c. I/355.
- Mason, B.D., G.L. Wycoff, W.I. Hartkopf, G.G. Douglass и C.E. Worley (2016). The Washington Visual Double Star Catalog. Washington: US Naval Observatory, VizieR Online Data Catalog.
- Gaia Collaboration, A. G. A. Brown, A. Vallenari, T. Prusti II et al (2018). Gaia Data Release 2. Summary of the contents and survey properties. A&A 616.
- Kiselev, A. A., O. V. Kiyaeva и др. (2014). Pulkovo catalog of relative positions and motions of visual double and multiple stars from photographic observations with the 26-inch refractor in 1960-2007. Astronomy Reports 58.2, c. 78–97.
- Izmailov, Igor, Aleksey Rublevsky и Arina Apetyan (2020). Astrometric observations of visual binaries using 26-inch refractor at Pulkovo Observatory during 2014-2019. Astronomische Nachrichten 341.8, с. 762—769.
- Kiselev, A. A. μ O. V. Kiyaeva (1980). The Method of Apparent Motion Parameters, used to determine the orbit elements of a visual double star on the basis of short arc observations. Astron. Zh. USSR 57.6, c. 1227–1241.
- Kiyaeva, O. V. (1983). Using time-distant observations to refine the orbit of a visual double star obtained by the Apparent Motion Parameters method on the basis of a short arc. Astron. Zh. USSR 60.6, c. 1208–1216.

Dynamical investigation of the multiple star ADS 9173 AB

O.V. Kiyaeva¹, I.S. Izmailov¹, N.V. Narizhnaya¹, L.G. Romanenko¹

¹ The Central Astronomical Observatory of the RAS at Pulkovo

Abstract

Star ADS 9173=WDS 14135+5147=Hip 69483 is a complex system. The B component has a spectroscopic companion, whose orbit with a period of 4.9 years has been known since 1986. The Gaia telescope has detected a distant faint pair over 100" away from the bright AB pair. In our article, we study the movement in a bright pair based on long-term observations with the 26-inch refractor of the Pulkovo Observatory. The AB pair orbit with a period of 6306 years was calculated using the apparent motion parameters (AMP) method. The astrometric orbit of the component B was determined on the basis of the residuals of the homogeneous CCD observations up to 2023 with the 26-inch refractor. It is in agreement with the spectroscopic one. The remaining secondary residuals show a wave with a period of approximately 20 years, the reasons for which are discussed.

Таблица 3: ПЗС-наблюдения пары АВ на 26-дюймовом рефракторе и невязки.

t, год	ho,''	$Err\rho,''$	$ heta,^\circ$	$Err\theta,^{\circ}$	dx1, mas	dy1, mas	dx2, mas	dy2, mas
2003.380	13.5683	.0034	235.6699	.0158	003.4	022.2	-2.8643	11.8928
2004.180	13.5949	.0056	235.7695	.0179	-029.5	029.6	-26.0504	22.9184
2004.188	13.5987	.0065	235.7208	.0258	-026.1	017.9	-22.5598	11.2674
2004.215	13.5951	.0066	235.7719	.0263	-029.9	030.1	-26.0534	23.6356
2004.259	13.6049	.0067	235.7595	.0161	-036.2	022.2	-31.8589	16.0161
2004.264	13.6166	.0095	235.7579	.0363	-045.7	015.4	-41.3033	9.2484
2005.111	13.5634	.0068	235.6285	.0230	018.1	023.1	29.1807	23.4550
2005.146	13.6108	.0057	235.6954	.0277	-029.9	009.6	-18.7407	10.2505
2005.149	13.6085	.0065	235.7087	.0216	-029.7	013.5	-18.5350	14.1763
2005.206	13.6245	.0083	235.6631	.0186	-036.7	-004.3	-25.4676	-3.1448
2005.217	13.6294	.0060	235.6965	.0202	-045.1	-000.5	-33.8633	0.7470
2006.102	13.5856	.0041	235.6209	.0128	003.7	012.6	-2.8461	14.7308
2006.195	13.5662	.0118	235.6348	.0418	018.1	026.6	8.2601	27.2435
2006.233	13.5908	.0060	235.6320	.0143	-001.7	012.3	-12.7180	12.3128
2006 329	13 5896	0077	$235\ 6457$	0211	-002.3	016.0	-15 8055	14 4550
2006 348	13.5901	0053	$235\ 6378$	0210	-001.5	014.2	$-15\ 4203$	123570
2000.010	13.5794	0101	235 6586	0168	007.2	011.2 027.6	-9 5144	174873
2007.200 2007.344	13.5705	0090	235.6500 235.6742	0302	012.8	036.0	-3 3668	25 6276
2007.011	13.5700 13.58/0	.0050	235 5621	0.0002	012.0	006.7	1 3/60	-3 8875
2001.421	13.0040 13.5697	0042	235.5021	.0111	010.5	021.9	21 1669	11 //02
2008.223	13.5057 13.5850	.0042	235.5840	.0100	020.1 014.7	021.9	7 0001	9.4767
2008.240	13.0009 13.5652	.0048	235.5040	.0133	014.7	012.9	24 3371	15 3844
2000.240	13.0002 12.5704	.0007	235.5900	.0144	016.8	020.8 021 5	24.3371 10.0070	11.0079
2000.240	13.0794 12 5045	.0055	235.0090	.0100	010.0	021.0	2 4685	11.0972 2.0257
2008.209	13.0940 12.5605	.0049	235.0109	.0174	0.04.1	013.3	-2.4000	2.9257
2008.327	13.3093	.0073	230.0209	.0229	030.3	011.1	30.3018	0.9155
2008.330	13.3934	.0100	233.0033	.0248	005.9	013.1	0.1978	2.9242
2008.357	13.3800	.0082	235.6017	.0204	017.0	020.1	12.2305	10.0064
2008.390	13.5821	.0047	235.5308	.0182	025.4	005.2	20.4359	-4.7888
2008.400	13.5181	.0094	235.4576	.0107	088.1	027.1	83.3330	17.1639
2008.409	13.5766	.0087	235.6056	.0172	020.0	022.9	15.2705	12.9740
2009.266	13.5954	.0051	235.6201	.0090	005.1	018.3	10.5631	12.7980
2009.269	13.5878	.0088	235.6081	.0181	013.0	020.2	18.4956	14.7187
2009.272	13.5918	.0049	235.6135	.0132	008.9	019.0	14.4268	13.5387
2009.283	13.6174	.0119	235.6701	.0391	-019.7	015.7	-14.0569	10.3139
2009.296	13.5974	.0064	235.6123	.0143	004.6	015.6	10.3806	10.3037
2009.414	13.5975	.0064	235.5814	.0207	008.9	010.0	15.8776	5.5402
2010.058	13.6291	.0064	235.5714	.0171	-013.9	-007.6	-2.7263	-6.8822
2010.279	13.6385	.0061	235.5878	.0160	-023.2	-008.8	-12.2681	-6.2679
2010.282	13.6399	.0084	235.5330	.0291	-017.0	-020.4	-6.0811	-17.8450
2010.285	13.6398	.0119	235.5815	.0277	-023.4	-010.8	-12.4950	-8.2212
2010.299	13.6153	.0089	235.5714	.0338	-001.7	001.1	9.1377	3.7865
2010.318	13.6138	.0054	235.5598	.0159	001.0	-000.3	11.7341	2.5319
2010.323	13.6289	.0057	235.5452	.0146	-009.4	-011.6	1.3046	-8.7303
2010.413	13.6310	.0087	235.5362	.0331	-009.6	-014.2	.3985	-10.6868
2011.161	13.6035	.0113	235.5275	.0279	016.4	002.3	4.6962	1.9170
2011.178	13.6394	.0084	235.5331	.0169	-014.0	-016.9	-26.1629	-17.5611
2011.183	13.6134	.0050	235.4954	.0156	012.6	-009.5	0.3057	-10.2428
2011.186	13.6142	.0060	235.5270	.0243	007.7	-003.8	-4.6734	-4.5925
2011.205	13.6233	.0052	235.5266	.0120	000.3	-009.0	-12.5489	-10.0986

t, год	$\rho,''$	$Err\rho,''$	$ heta,^{\circ}$	$Err\theta,^{\circ}$	dx1, mas	dy1, mas	dx2, mas	dy2, mas
2011.208	13.6340	.0076	235.4989	.0213	-004.8	-020.4	-17.7232	-21.5477
2011.385	13.6159	.0087	235.6037	.0312	-003.4	011.0	-19.5765	7.2251
2011.388	13.6249	.0046	235.5024	.0180	002.8	-014.0	-13.4149	-17.8143
2012.423	13.5989	.0100	235.5258	.0311	024.0	009.0	9.2995	-1.7953
2016.166	13.6530	.0060	235.4977	.0222	-005.9	-013.9	-20.0280	-15.8974
2016.409	13.6636	.0116	235.5154	.0342	-016.3	-015.5	-33.7144	-20.7763
2016.415	13.6681	.0071	235.4936	.0169	-017.1	-022.3	-34.5598	-27.6451
2016.417	13.6586	.0062	235.4841	.0141	-008.0	-018.8	-25.4743	-24.1675
2016.420	13.6699	.0053	235.5244	.0160	-022.7	-017.3	-40.1967	-22.7023
2017.242	13.6471	.0054	235.4595	.0130	007.2	-014.2	-8.2459	-24.8191
2018.236	13.6478	.0076	235.4464	.0204	011.3	-013.6	6.8038	-23.4619
2018.241	13.6426	.0126	235.4479	.0361	015.3	-010.3	10.8655	-20.1446
2018.247	13.6429	.0064	235.4819	.0224	010.5	-003.8	6.1395	-13.6239
2018.255	13.6403	.0046	235.4431	.0154	018.0	-010.0	13.7390	-19.7956
2018.299	13.6257	.0101	235.4655	.0171	027.1	002.8	23.3820	-6.8365
2019.257	13.6352	.0094	235.5623	.0293	008.9	019.8	16.2159	15.5971
2019.263	13.6398	.0079	235.4516	.0236	020.2	-004.5	27.5728	-8.6587
2019.287	13.6436	.0065	235.4984	.0238	010.8	002.7	18.3991	-1.2797
2019.325	13.6439	.0058	235.5202	.0156	007.6	006.9	15.5475	3.2062
2019.328	13.6553	.0078	235.5116	.0234	-000.6	-001.3	7.3750	-4.9706
2019.350	13.6544	.0053	235.5357	.0201	-003.1	004.1	5.0708	.5969
2019.410	13.6431	.0047	235.4814	.0199	013.8	000.0	22.4849	-3.0383
2020.404	13.5664	.0108	235.4975	.0384	077.6	050.2	84.8754	54.6701
2020.409	13.5818	.0127	235.4658	.0458	069.3	035.3	76.4714	39.7860
2020.412	13.5731	.0137	235.5021	.0291	071.6	047.4	78.7096	51.8950
2020.415	13.5740	.0081	235.4988	.0266	071.3	046.2	78.3446	50.7040
2020.418	13.5554	.0096	235.5583	.0339	078.6	068.3	85.5816	72.8125
2021.177	13.7096	.0073	235.5911	.0148	-050.8	-009.8	-66.7591	-13.3571
2021.185	13.6800	.0082	235.5847	.0145	-025.5	005.7	-41.5702	2.0328
2021.231	13.6926	.0095	235.5688	.0267	-033.6	-004.4	-50.2398	-8.6746
2021.248	13.6842	.0099	235.5518	.0392	-024.3	-002.9	-41.1256	-7.3920
2021.264	13.6802	.0097	235.5465	.0364	-020.2	-001.6	-37.1874	-6.2911
2021.267	13.7003	.0106	235.5885	.0331	-042.5	-004.7	-59.5158	-9.4272
2021.395	13.6584	.0077	235.6091	.0289	-010.4	023.4	-28.3202	17.2279
2023.205	13.6656	.0053	235.3938	.0173	017.9	-016.6	14.2069	-26.2290

Невязки по прямому восхождению (dx1) и по склонению (dy1) после учета ПВД-орбиты пары AB — исходные данные для определения астрометрической орбиты Ba-Bb. После учета также астрометрической орбиты Ba-Bb остаются невязки соответственно dx2 и dy2.

	n	<u>_</u>		D D1
Таблица 4.	Элементы	ороиты	пары	Ba-Bb
raomina i.	Onomonin	oponibi	nappi	$\mathbf{D}\mathbf{u}$ $\mathbf{D}\mathbf{v}$.

	таблица 4. Олементы броиты пары Ба-Бб.										
	a_{ph}, mas	a, a.e.	P, год	e	$\omega,^{\circ}$	$i,^{\circ}$	$\Omega,^{\circ}$	T, год	M_{Ba}, M_{\odot}	M_{Bb}, M_{\odot}	Ссылка
	18.3	3.56	4.904	.53	82	109	251	2010.917	1.4	≥ 0.48	Эта
\pm	3.1	-	-	-	15	14	10	-	-	-	работа
	*21.3	-	4.904	.53	96	-	-	1927.583	-	≥ 0.5	Bakos, 1986
\pm	3.3	-	0.009	.09	3	-	-	0.016	-	-	

Здесь: a_{ph} — большая полуось орбиты фотоцентра, а — большая полуось относительной орбиты. * — согласно (Bakos, 1986) $a_{ph} * sin(i) = 1$ а.е., значение a_{ph} пересчитано нами с учетом параллакса Gaia DR3 (Gaia Collaboration, 2022), угла наклона и его ошибки.