

-

-

/

-

:

)

(

		3
1.	HD52721	Be 20
	11032721	
1.1.		
1.2.		
1.3.	HD52721	
1.4.	1	
2.	HD52721	
2.1.		
2.2.		41
2.3.		
2.4.		
2.5.	2	
3.	/	
HD37806		59
3.1.		59
3.2.		61
3.3.		63
3.4.		
		71
3.5.		
3.6.	HD37806	
3.7.	3	89
		91
		93

PMS

3

[10].

· , , / (. . [11], . [12,13]). , , , , [14], . [15],

[16]). PMS , / ,

/

(× 10),

- - ALMA, VLTI (CHARA .) ó . [19], PIONER/VLTI (. [20]), AMBER/VLTI (. [21]) GRAVITY/VLTI (. [22], . [23]).

1 . .,

1

(perturbations)

/

(.

,

[24]).

, PCyg, , . 90-, (.[25]),

PCyg ó

PMS : / T Tauri

,

,

(МА-).

,

).

,

,

[49] . [51] . [52],

,

. [60-63].

3 ó 0: HD200775 (B2-B3), HD53367 (B0) HD52721 (B2).

/

ó

IL CepA, ,

,

•

,

HD52721,

,

0

1.

:

_

2

•

•

1.

,

•

,

13

HD52721,

HD37806

,

•

•

. HD52721

,

,

:

,

HD52721.

HD52721,

:

•

,

HD37806

HD52721,

,

1.

[1] . ., . ., •• . HD52721 ó // / ó 2011. ó . 54. ó . 2. ó . 243 ó 261. [2] •• •••, • •, •• HD52721 ó •• •, . ó 2013. ó . 56. ó . 1. ó . 51 // ó 67. [3] • • ••• ••• · ·, •, . . HD52721 // . ó 2013. ó . 109. ó 1. ó . 38 ó 43. [4] • • •••, • •, HD52721: /

16

	•	ó 2015. ó . 41. ó	6. ó . 317 ó 327.		
[5]	• •,	• •,	• •,	• •,	
			Ae/Be		HD
37806 //	. ó 20	18.ó.61.ó.	1. ó . 15 ó 30.		
[6]	• •,	• •,	• •,		
		/	HD37806 //		. ó

2019. ó . 62. ó . 1. ó . 23 ó 42.

[7] Pavlovskiy S.E., Pogodin M.A., Beskrovnaya N.G., Kozlova O.V., Alekseev I.Yu., Valyavin G.G., Miroshnichenko A.S., Gorda S.Yu. Unusual spectroscopic behavior of the Herbig Ae/Be star HD37806 // ASP. Conf. Ser. ó 2019. ó V. 518. ó P. 144 ó 146.

[8] Pogodin M.A., Beskrovnaya N.G., Pavlovskiy S.E. The Pulkovo program for spectroscopy of Herbig Ae/Be stars: 33 years of observations with the 2.6-m Shajn telescope of the Crimean Observatory // in: Graund-Based Astronomy in Russia. 21 st Century. ó 2020. ó SAO RAS, N. Arkhyz, Russia. ó P. 133 ó135.

[9] Pogodin M.A., Beskrovnaya N.G., **Pavlovskiy S.E.**, Guseva I.S., Kuprianov V.V., Gorshanov D.L., Ezhkova O.V., Ikhsanov N.R., Valyavin G.G. Photometric and spectroscopic peculiarities of the unique Herbig Be star HD52721. An eclipsing close binary system // Az. Astron. Journal. ó 2020. ó V. 15. ó 1. ó P. 143 ó 151.

[10] Obolentseva M.A., Dyachenko V.V., Pogodin M.A., Khovrichev M.Yu., Pavlovskiy S.E. HD52721 as a quadruple system // Astrophys. Bull. ó 2021. ó V. 76. ó P. 292 ó 296.

17

//

9

- 6 International astronomical conference õStars: from collapse to collapseö, Special Astrophysical Observatory RAS, October 3 ó 7, 2016, Nizhny Arkhyz, Russia.
- ό « , », - ,17 ό 21 2018 .

11

- ó International astronomical conference õPhysics of magnetic starsö, Special Astrophysical Observatory RAS, October 1 ó 5, 2018, Nizhny Arkhyz, Russia.
- ó õMendeleev 2019 Congressö, St. Petersburg, September 9 ó 13, 2019.
- ó International astronomical conference õPhysics of stars and planets: atmospheres, activity, magnetic fieldsö, Shamakhy, September 16 ó 20, 2019, Azerbajan.
- 6 The second international workshop õThe UXOri type stars and related objectsö,
 St. Petersburg, September 30 6 October 4, 2019.
- All-Russian conference õGround-based astronomy in Russia. 21st Sentury All-Russian conference õGround-based astronomy in Russia. 21st Senturyö, SAO RAS, 21 ó 25 September, 2020, Nizhny Arkhyz, Russia.

ó										
	«				,			»,	•	, 31
		3	2021	••	,					
ó							«			
									»,	, •
		, 11-16		2022	••	,				

	(94)	,
	2009 ó 2013 .			,
			OAN SPM	I,
2. 1 ^d .6101524 ±	0 ^d .0000030,		H	HD52721 P =
3.		/		HD37806,
	2009 ó 2019		-2.6 ()

3.		/	/	HD3780
	2009 ó 2019		-2.6	()
2.1-	OAN	SPM	(277	
).				
4.				

HD37806,

,

(4000

,

,

,

/

1.

HD52721

 $= 1.610^{d}$.

)

,

•

HD52721

1.1.

HD52721 (GU CMa, MWC 164, B2Vne, $V = 6^{m}.6$)

,

CMaR1

100

ADS 5713 (RST 3489)

	= 0".65	$m = 0^{m}.95.$
HD52721	1050 [73],	

•

650 . .

,

,

HD52721

[1].

,

•

[9]

HD52721

[73],

HD52721

. [73].

,

70-

[78].

,

,

> 10

HD52721	(10).		, 1987-19	98.		320	
HD32721		12			[72].	·	[72]		
							[/3],		,
				:	$= 0^d$	¹ .80508		, = 1 ^d .610158,	
		.1.1.			,				, 0 ^m .25,
					•				[74] (107
BVRI			5			1985	.),		
HIPPARCOS 1 ^d .610137).	-		[79] ,		90-		(=
		U-B,	B-V	V-R					
			[. [73],			
					,			3	
1.				:					
									= 1.610
[73]			,		,			HD52721,	
1991 .						-6	()	

•

2. , , (, 0). = 0.805 , , , , [73] 3. HD52721,

Cep.

HD52721.

,

: $= (t \circ t_{0}) P / P^{2} \qquad (1)$ to $\circ \qquad , \circ \qquad , P \circ \circ$ 12- $5400 = 0^{d}.80508,$ $= \pm 0.00001^{d}$

0.05.

•

t

Figure 9. Light curve (left) and phase diagram (right) of HD 52721 in *BVRI* during five nights in 1985 March. For the construction of the phase diagram a period of 0.80508 d was assumed. Vertical marks indicate the times at which H α (top) and Mg II λ 2800 (bottom) data were obtained.

[73]).

. [74].

.9

.1.1 (.

. 1.2.

HD52721

1985 .

0^d.80508,

 $0^{d}.8050718 \circ 0^{d}.8050796 = 1^{d}.6101430 \circ 1^{d}.6101640,$ 1 2• 2 1 2, = $1^{d}.6101524 \pm 0^{d}.0000030.$ 1.610^d HD52721 .1.3. : 1) .1.1. , 2) $V = 6^{m}.737 \pm 0^{m}.003.$ V = $6^{\rm m}.722 \pm 0^{\rm m}.003$, 0^m.015, 3

10⁻⁶

 $0^{d}.8050757$ $_{2} = 1^{d}.6101514.$ (

1987-1998 . -[80] _____1 =

HD52721

1.2.

-

),

:

$$V = 6^{m} .510 \pm 0^{m} .010.$$
3)
,
(.[74]).
. 1.3
= 0
 $\tilde{0}$ $\tilde{0}$.

 $JD2455263.2416 \pm N \ , \ \ (2)$

=

:

 $\pm 0^{d}.0042$,

2009 .

V,

0.5.

ASAS [81].

HD52721,

,

,

2003 . 500

 $\pm 0^{m}.03.$.1.4 ASAS-

 $= 1^{d}.6101524.$

= 1^m.610)),

[73],

,

,

),

HD52721 ó

,

,

= 1.610

,

, , [75],

:

)

HD52721,

28

1.3.

HD52721

1.3.1.

•

KAF-1600

BVR

,			().	
			UBVR	ł		.1.5.
, R,			3			
-20 -30 ,		-				
±1 .						
,			$(t_{exp} = 20)$	6) c),	
				bias-		
,	35 20%			2010	2013 ,	
1743 2013 .),	2070	,	2879	-	(1136	2010
« 1.	» -		,	2	:	
, 2. 2						
2	4-	:		,	-	(.

.1.6.).

•

29

		4-	
(Apex II, . [83]),	,) (ISON (, . [82] . [84]).
,	TFRM (, . [85])	
	(. [86])	,
		«	,

,

,

HD52774

1.3.2.

)

. 1.6. 2

SAO 152253 ó É SAO 52591 ó

HD52721 ó

HD52774 ó

É

É

É

2 (V = $8^{\text{m}}.68$, B-V = $1^{\text{m}}.13$)

:

2

,

1 (V = $9^{m}.29$, B-V = $1^{m}.17$)

.1.6.,

 $(V = 6^{m}.59, B-V = 0^{m}.06)$

 $(V = 8^{m}.82, B-V = 0^{m}.01)$

:

,

•

1 (St.1), 2 (St.2) 25.03.2010

33

,

,

•

HD527	721				2010 . (.1.8)
2013	. (.1.9)		$= 1^{d}.610$	01524,		
			1.8 1.9		,	
		-				10
		2010	2013 .		.1.10.	
		-				
	é	$0^{m}.04.$				HD52721
				(.1	.8 1.9)	
0 ^m .02.		,		10	(.1.10)	
	0 ^m .007.					
		.1.8,			2010 .	
			,			
é 0.20						
				12	20 .	
			25.03,		ó	,
17.03.		,				
(0 ^m .20),		0.10)	,
		4-			12 25 ,	
	,	8	3			
	•	12.03	0.12			
						0.07
	,		1985 .		[74].	
			,		,	
				,		
			1.			
	2013 .					
		0.20	0.35			

,

0.30

ASAS (.1.4).

.1.8.

2010

2013

. (

36
1.4. 1

1. HD52721,

2013

1.6101524

•

(. 2). 2. , 2010 . ~ 0.2

.

•

[76]. Smoothed Particle Hydrodynamics (SPH)

,

,

3.

,

•

,

2009

2-

,

_

,

=

6.

•

,

2013 .,

,

•

•

•

2003-2009 .

ASAS.

•

,

,

HD52721

,

.

,

2.1.

•

,

HD52721

			2009	•	2010 .	-
2.6 .		-		ASP-14	-	Andor IKON-L
(2048 x 2048 px).	14			54	HD52	2721
R ~ 25000		, H	IeI 6678	3		DNaI (5889, 5895).
						68Å.

CCDROCK SPE, , , 100. / . 1 • , HD52721 OAH SPM UNAM REOSC [87], () -, 2.1-R = 17000. 3800 ó 6800 Å (26). 5 18 2010 . (5 25 40 9 3) IRAF

,

/		-		100	200		
.1.			. $= 1^{d}.6101524$			((1),
	1.3.2.						

1

OAN SPM UNAM

,

	(JD2455000 +)	$(=1^{d}.610)$	
18.02.10	246.713	0.735	
19.02.10	247.778	0.396	
23.02.10	251.760	0.869	
24.03.10	252.832	0.535	
25.03.10	253.776	0.115	

HD52721

:								
1.			HeI	4009,	4026,	4144,	4388,	4471
2		•						
2.				,				
								•
3.		FeII						PCyg.
4				н	eI 6678	2		
.				11	01 0070	,		
				•				,
				•				
5.	(IS)			DN	laI.			

,

2.2.

HD52721, , :) , ,) -

.

,

,

,

1.

(=0.0),=0.5

,

,

,

)

,

(

,

,

(), 0.5, 0 , 0.5 1 , (. .2.1,). ó 2. , , , , 20000 . HD52721 (

),

,

,

(. .2.1.,).

,

,

,

25000

,

.

•

 $= +25.4 \pm 1.2$ / .

DNaI,

,

 $+31.1 \pm 0.5$ / . , ,

.2.3

HeI 4026

(= 0.53).

,

•

,

,

,

•

= 25000 , log g =4.0 Vsin i

160 200 / .

,

•

.

,

•

/,

HD52721

Vsin i

ó

$$= 1^{d}.6101524,$$

. 2.3.

HeI 4026

(= 0.53) $: = 25000 , \log g = 4.0, V \sin i = 200 300 / .$

(=0.53)

(

= 0.73)

HeI 4026,

46

2- (. 1.1).

,

1.1, SIMBAD, HD52721 (~ 0".65, m ~ $0^{m}.95$). 1000 [73],

,

HD52721

,

650 . .,

,

?)

(

,

,

!),

(

•

,

2.3.

•

,

,

,

,

,

[73],		HD52721 d = 1050 ,
= 25100 ()	$\log (L/L_{sun}) = 4.25$

,

R é 5 Rsun,

= 1.610, sin i = 1

V

r :

$$V = 115 (/M_{sun})^{1/3} / (3)$$

r
$$/R = 3.68 (R/R_{sun})^{-1} (-/M_{sun})^{-1/3}$$
 (4)

,
$$2, = 10_{sun}, R/R_{sun} = 5-6$$
 (
), $r = (1.3 \ 6 \ 1.6) R V = 250 / . V ,$
().

V_{rot} V - R c

r .

R/r = 0.63.

$$V_{rot}$$

. , R 5 R_{sun} [73] 6 R_{sun} (
2 ,),
 $= 1.610$, V_{rot}
160 200 / . V /V_{rot} 1.25 ó 1.56,
r /R = 1.3 ó 1.6. .

$$1 / \mathbf{R} = 1.5 + 0.1.0$$

$$(q = 1):$$

$$\mathbf{r} = 0.49q^{2/3} / (0.6q^{2/3} + \ln(1 + q^{1/3}))$$

$$\mathbf{r} = 0.38$$
(5)

$$I = 0.3$$

•

r /R = 1.6

2.4.

HD52721

-

,

,

1.2R.

,

•

,

,

•

.2.5

,

Fc = 1

•

,

•

•

,

•

Fc

•

Vm.

2.2. 0 0.5, () 3.0 КРАО H_{α} 2.5 2.0 F/Fc 1.5 1.0 25.03.10 0.5 28.03.10 22.10.10 -800 -400 400 800 0 Vr(km/s)

= +25.4 / ,

•

$$Fc. Fc = 1$$

2.6.

,

Vm ó

Vm

 ± 0.9 /.

ó (. .2.7).

ó

0 0.5,

,

ó

. 2.7. = 0.39 0.73

PCyg-

-1000 / .

,

,

,

. 2.8.

HeI 6678

Vsin i = $300 \quad 400 \quad /$,

. 2.9. , .2.8,

 $\pm \ 800$ / ,

,

10 M_{sun} R = 5-6 R_{sun} : \pm

,

 $\left(GM/R \right)^{0.5} \; = \; \pm \; 570\text{-}620 \qquad / \; \; .$

1.5-1.0,		
ó 1.25-1.56,	,	HD52721

3. , « , , ()

_

:

,

)

HeI 6678 $= 1^{d}.610.$

,

) (• , , [90]. 4.

•

HD52721

	3	
	/	D37806
3.1.		
/	HD37806 (1	MWC120, B8 - A2),
	Orion OB Ib,	,
,		[92]
[93].		
	IRAS (. [94]),
	/	,
. [10].		
$(Av < 0^{m}.1, [95, 96]),$	Vsin i = 120 ± $+47 \pm 21$ / [30 / ([41, 97]) [41].
« »	(. [98]).
(.	[99]) HD37806	
imes 0".1	m $\ddot{O} 5^{m}$, ,	
	HD	37806
-	Vsin i (.[39],
. [41], . [100]).	,	
MOST (. [10	1])	
		1.5 .
,		,
	, ,	M R,
t _{age}	r,	
- ,	: M	I ó 3.0 4.3
, $R = 4.6 \pm 0.5$, $t_{age} = 1.5$ ó 2.0 ± 10^6	, d 375 430

	. [20]
PIONIER+VLTI ($i = 41.5^{\circ}$)	
Br	,
, . [102],	$i \sim 40^{\circ}$.

/	ABAur,	$\sim 4 \pm 10^6$,
(. [107]).	
	HD37806	

)

,

•

,

,

,

	,	1995	2007 .
[108]			[109-111].

. (

			,	,		
	•					
		,				,
PCyg	III				[112].	

, , HeI 5876, FeII 4923	DNaI,
;	
)	
)	
3.2.	
() 2.6-	. 2013 .
ASP-14,	-
R ~ 20000.	6-
2009 2013 . 18	,
13	HeI
5876 DNaI.	
,	
. ,	
,	Н,
HeI 5876, DNaI, FeII 4923,	
	. 2013 2019 .
49	. ,
,	2009 2019 ,
250 (81	48).
	2.
3- 2010 . 2.1-	, OAN SPM ()
REOSC (R ~ 17000).	40
9	3800-6800Å (26),

•

,

61

		/	(S/N)		5000	Å,	
(V/R)			.2				
							2
			HD37806,		OAN SPM		
			JD	Ν	S	5/N (5000Å)	V/R (H)
		(2450	0000.0 +í)			
	19.02.10	52	246.767	9		90	0.55
	26.02.10	52	253.728	9		65	0.47
	27.02.10	52	254.729	9		65	0.52
OAN	SPM:		DECH	, ()	SPE ()

62

OAN SPM:	DECH () SPE (
IRAF ó	OAN SPM.	

,

,

SYNTH+ROTATE [88]

HD37806,

,

: Teff = 10000 K, log g = 4.0, Vsin i = 120 /

,

VALD

+50 / .

	3.3.		
	3.3	3.1.	
	.2.1	,	
	V/R,		,
	. ()	,
			(1 Fc),
5 /	2009 2019	Vr).	-50 / (-48 ±
,	V/R PCyg III (, [112])	
,	2012 .	2013 . (.3.1).	,

(V/R

,

•

× 1).

,

2017 .,

•

•

.2.2.

,

,

•

,

HD37806, [108], ,

,

,

(

).

•

ó

V/R

. 3.2.

PCyg III

ó

(

+400 / (2017 .). FeII

•

,

,

•

-50 / ,

,

,

•

FeII 4923

HD37806

: Teff = 10000 K, log g = 4.0, Vsin i = 120 $\,$ / $\,$.

).

 D_1 D_2 .

-50 / . -30 2013 . -145 -115 , -105 /. /, 27 +45, / (.3.4,). -30 (-50 /) (2017, .3.4,). , D_1 D_2 ,

 ± 1 / .

,

•

,

,

3.3.4. HeI 5876.

~

5876

•

(.

,

•

,

3.4).

,

. 2.5.

. 3.5. HD37806.

.

HeI 5876,

•

HD37806,

,

•

7/8,

•
,

,

-55 / .

,

ý

 $(Vr = -175 \ / \).$, , , 8/9 $Vr = -150 \ / \ , \qquad 9/10 \qquad 6 \quad Vr = -135 \ / \ .$ 11/12 , $\acute{y} \ ,$

, , 3.6.

3.4.3.

,

2017 .

,

V/R(H)

~ . , 2009 2019 , , 2017 . (V/R × 1) 2017 . ó

2018 , 2018 . (. 3.6). , V/R -, HeI 5876, , FeII 4923 DNaI V/R(H). 3 , : V/R (0.34 ó 0.37),) 11 12 2016 ., PCyg III;) 5 12 2017 ., V/R 6 (0.70 ó 0.92)) 4 9 2017 ., V/R3 (1.00 ó 1.26). 2016 . PCygIII-, (.3.8). 2017 . DNaI • -50 / , , 6 7 • • • , (.3.8 3.9). HeI 5876. HeI , / . +4006 7 , 9 HeI • ó 3-, 6 • 2017 . .3.10 FeII 4923 NaI D₂, 12 HeI , •

74

HeI.

•

,

,

. 3.9. , .3.8, HeI 5876 DNaI.

,

)

eII	,		HeI,	~ +350	/,	D
	,	+250	/.			

: 2017

```	)									
	,									,
	·									
	3.4.4.				HD378	806		V/R	(H)	
					2017 .					
		2017								
		2017	•							
				V/R(H	),					
( .	. 3.6).		,					-		
					,	,				4
	39		, 2017 .							4-
	.3.11						HeI 5	876, H	, FeII 4	923
NaI D ₁ ,				•		,				
				. 3						_
										$D_1$ .
			$D_1$		5	,	, 8			
							,			
				,	, 9					
	$D_1$					+250	,		,	
										•
				9						
	+400	/	H	eI	+350					

•

-45 / . -27 / .

,

V/R

•

2017 .

,

(

,

,

•

HD37806,

,

,

,

)

« » V/R(H ),

•

,

,

•



**. 3.11.** 12 2017 .,

V/R(H)

HD37806 3



1.1 Fc.

( )

(«flared geometry»),

PCyg II.

PCyg III

ó

V/R < 1 ( ).

 $: -47.2 \pm 3.4 \quad / \quad ( ), -45.7 \pm 6.4 \quad / \quad ( ), -45.8 \pm 6.1$  / (FeII 4923), -48  $\pm$  3.7  $\quad / \quad (DNaI).$ 

-55-60 / , , , PCyg III ( 2016 .) -40 / ,

2017 .).

FeII 4923.

,

3

( )

V/R (H )

(





).

(

( ., , , [113]). , ( . [121]), , ,

-50 /

,

,

$$Vr = -25.6 \pm 1.6$$
 / .

,

HD37806.

,

3.5.2.

HD37806.

,

.3.7).

,

,

ó

PCyg III,	7	12	2012 . ( .	3.4.2
				-175 /











,

,

••









HD37806 (P ~  $1.3^{d}$ ),

•

,

,

:

/

/

3.5.3.

	3 , : HeI 5876, Н , FeII 4923
DNaI.	2017 . ( . 3.4.3) ó
2017 . ( 3.4.4).	, :
1)	,
,	( 1.5 ).
-	
2)	,
,	
, HeI 5876 DNaI.	
,	DNaI,
	,

HD37806, • , . , ,

). ,

,

, ,

,

,

(

,

•

,

,

•

,

.

,

•

•

+370-400 / ,

4) - ,

•

PCyg III.

•

,

**3.6.** C

### HD37806

,

•

,

HD37806

Vsin i = 120 /

,

,

HD37806

•

1.

,

: 2017 .

+375 / , FeII ó +385 / , HeI 5876 ó +420 / ; , , +400, +380 +380 / ( . 2.4.3 2.4.4).

2. Br HD37806 ( . [102]), 2

. [45], ( [113]). . [101], 4. HD37806 MOST, 1.5 6. [114]), ( Rm dMacc/dt, R:  $R_m = [(B^4 R^{12})/(2GM (dMacc/dt)^2)^{1/7}]^{1/7}$ (6) HD37806 ( ) [115] ó 1.4£10⁻⁷ Msun/ . ,

 $10^{2}$ 

300

: Rm/R = 1.7 ó 2.2.

[102].

HD37806

,

= 200 ó

,

, 10²

,

3.

HD37806 2009 2019 / ( OAN SPM ) 277 (R 20000) H , H , HeI 5876, FeII 4923 DNaI. : , 1. (~~ ) PCyg III, ó , (V/R < 1).( , 2018 .) 2017 (V/R > 1).HD37806 ó («flared geometry»), 2. ) ( ó ). ( 3. 2017 .) ( HeI 5876, H , FeII 4923 ~ », DNaI ó

,

89

3

3.7.

PCyg III,

,

«

~

V/R,

• ( . [112]).

,

12 ( . [29]), **»** , •

• 4. , ,

HD37806.

,

,

,

,

.

/ : 1.

HD52721, 2009 ó 2013 .,

 $= 1.610^{d}$ .

,

)

2. HD52721, :

,

;

, ;

,

) ,

. 3.

( 300 ) / HD37806,

. 4. , HD37806 :

) ;

)),

•

;

92

**1.** Herbig G.H. The spectra of Be-and-Ae type stars associated with nebulosity // Astrophysical Journal Supplement. ó 1960. ó V. 4. ó pp. 337-382.

**2.** Larson R.B. Numerical calculations of the dynamics of collapsing proto-stars // Monthly Notices of the Royal Astronomical Society. ó 1969. ó V. 145. ó Is 3. ó pp. 271-295.

**3.** Stahler S.W., Shu F.H., Taam R.E. Evolution of protostars. I. ó Global formulations and results // Astrophysical Journal. ó 1980. ó V 241. ó pp. 637-654.

**4.** Palla F., Stahler S.W. The evolution of intermediate-mass protostars. I. Basic results // Astrophysical Journal. ó 1991. ó V. 375. ó pp. 288-299.

**5.** Palla F., Stahler S.W. The birthline for intermediate-mass stars // Astrophysical Journal Letters. ó 1990. ó V. 360. ó pp. L47-L50.

**6.** Palla F., Stahler S.W. The pre-main-sequence evolution of intermediate-mass stars // Astrophysical Journal. ó 1993. ó V. 418. ó pp. 414-425.

**7.** Hayashi C. Stellar evolution in early phases of gravitational collapse // Publications of the Astronomical Society of Japan. ó 1961. ó V. 13. ó pp. 450-452.

 Joy A.H. T Tauri variable stars // Astrophysical Journal. ó 1945. ó V. 102. ó pp. 168-195.

**9.** Finkenzeller U., Mundt R. The Herbig Ae/Be stars associated with nebulosity // Astronomy and Astrophysics. Suppl. Ser. ó 1984. ó V. 55. ó pp. 109-141.

**10**. Thé P.S., de Winter D., Perez M.R. A new catalogue of members and candidate members of the Herbig Ae/Be (HAEBE) stellar group // Astronomy and Astrophysics, Suppl. Ser. ó 1994. ó V. 104. ó pp. 315-339.

11.

· ·, UX Ori

•••

//

. ó 1988. ó . 28. ó . 2. ó . 311-327.

• •,

• •,

• • •

• •,

12.

WWVul //

. ó 1988. ó . 14. ó c. 514-525.

#### BF Ori //

~

. ó 1989. ó . 15. ó . 1028-1038.

• •,

**14.** Pérez M.R., Grady C.A. Observational overview of young intermediate-mass objects: Herbig Ae/Be stars // Space Science Reviews. ó 1998. ó V. 133. ó pp. 81-121.

٠,

**15.** Testi L., Palla F., Natta A. A search for clustering around Herbig Ae/Be stars. II. Atlas of the observed sources // Astronomy and Astrophysics. Suppl. Ser. ó 1998. ó V. 133. ó pp. 81-121.

**16.** Hillenbrand L.A. Isolated Herbig Ae/Be stars: rare examples of individual highmass star forming events // ASP.Conf.Ser. ó 1994. ó V. 62. ó pp. 369-372.

**17.** Antonellini S., Kamp I., Lahuis F., et al. Mid-IR spectra of the pre-main sequence Herbig stars: an explanation for the non- detections of water lines // Astronomy and Astrophysics. 6 2016. 6 V 585. 6 A61. 6 (13 pp.).

**18.** Seok J.Y., Li A. Polycyclic Aromatic Hydrocarbons in protoplanetary disks around Herbig Ae/Be and T Tauri stars // Astrophysical Journal. ó 2017. ó V. 835. ó A291. ó (36 pp).

**19.** Beltran M.T., de Wit W.-J. Accretion disks in luminous young stellar objects // Astronomy and Astrophysics Review. From Stars to Massive Stars. ó 2016. ó 6th-9th. ó id.3.

**20**. Lazareff B., Berger J.-P., Kluska J., et al. Structure of Herbig Ae/Be disks at the milliarcsecond scale. A statistical survey in the H band using PIONIER-VLT // Astronomy and Astrophysics. ó 2017. ó V. 599. ó A85. ó (41 pp).

**21.** Hone E., Kraus S., Davies C.L., et al. Compact gaseous accretion disks in Keplerian rotation around MWC 137 // Astronomy and Astrophysics. ó 2019. ó V. 623. ó A38. ó (9 pp).

**22.** Davies C.L., Hone E., Kluska J/, et al. Spatially resolving in innermost regions of the accretion disks of young low-mass stars with GRAVITY // Messenger. ó 2019. ó V. 178. ó pp. 43-44.

13.

**»** 

**23.** Perraut K. and GRAVITY collaboration The GRAVITY young stellar objects survey. I. Probing the disks of Herbig Ae/Be stars in terrestrial orbits // Astronomy and Astrophysics. ó 2019. ó V. 632. ó A53. ó (22 pp).

**24.** Menu J., van Boekel R., Henning Th. et al. The structure of disks around intermediate-mass young stars from mid-infrared interferometry. Evidence for a population of group II disks with gaps // Astronomy and Astrophysics. ó 2015. ó V. 581. ó A107. ó (25 pp).

**25.** Strafella F., Pezzuto S., Corciulo G.G. et al. Stellar winds in Herbig Ae/Be stars // Astrophysical Journal. ó 1998. ó V. 505. ó Is 1. ó pp. 299-314.

**26.** . ., . . .

//

. ó

/

1996. ó . 73. ó 2. ó . 194-202.

**27.** Gullbring E., Hartmann L., Briceno C., et al. Disk accretion rates for T Tauri stars // Astrophysical Journal. ó 1998. ó V. 492. ó Is 1. ó pp. 323-341.

**28.** Guenter E.W., Lehmann H., Emerson J.P., et al. Measurements of magnetic field strength on T Tauri stars // Astronomy and Astrophysics. ó 1999. ó V. 341. ó pp. 768-783.

**29.** Camenzind M. Magnetized disk-wind and the origin of bipolar outflows // Reviews in Modern Astronomy. ó 1990. ó V. 3. ó pp. 234-265.

**30.** Königl A. Disk accretion onto magnetic T Tauri stars // Astrophysical Journal Letters. ó 1991. ó V. 370. ó L39-L43.

**31.** Collier C.A., Campbell C.G. Rotational evolution of magnetic T Tauri stars with accretion disks // Astronomy and Astrophysics. ó 1993. ó V. 274. ó pp. 309-318.

**32.** Shu F., Najta J., Ostriker E., et al. Magnetocentrifugally driven flows from young stars and disks. I. A generalized model // Astrophysical Journal. ó 1994. ó V. 429. ó pp. 781-796.

**33.** Contiello M., Langer N., Brott I., et al. Sub-surface convective zones in hot massive stars and their observable consequences // Astronomy and Astrophysics. ó 2009. ó V. 499. ó pp. 279-290.

**34.** Hubrig S., Schöller M., Yudin R.V. Magnetic fields in Herbig Ae stars // Astronomy and Astrophysics. ó 2004. ó V. 428. ó L1-L4.

**35.** Hubrig S., Stelzer B., Schöller M. Searching for a link between the magnetic nature and other observed properties of Herbig Ae/Be stars with debris disks // Astronomy and Astrophysics. 6 2009. 6 V. 502. 6 pp. 283-301.

**36**. Hubrig S., Ilyin I., Schöller M. et al. HARPS spectropolarimetry of observation Herbig Ae/Be stars // Astronomische Nachrichten. ó 2013. ó V. 334. ó pp. 1093-1100.

**37.** Hubrig S., Kholtygin A., Ilyin I., et al. The first spectropolarimetric observations of the peculiar O4Ief supergiant Puppis // Astrophysical Journal. ó 2016. ó V. 882. ó A104. ó (7 pp).

**38.** Wade G.A., Drouin D., Bagnulo S., et al. Discovery of the pre-main sequence progenitors of the magnetic Ap/Bp stars? // Astronomy and Astrophysics. ó 2005. ó V. 442. ó L31-L34.

**39.** Wade G.A., Bagnulo S., Drouin D., et al. A search for strong ordered magnetic fields in Herbig Ae/Be stars // Monthly Notices of the Royal Astronomical Society. ó 2007. ó V. 376. ó Is. 3. ó pp. 1145-1161.

**40.** Alecian E., Wade G.A., Catala C., et al. Characterization of the magnetic fields of the Herbig Be star HD200775 // Monthly Notices of the Royal Astronomical Society. ó 2008. ó V. 385. ó pp. 391-403.

**41.** Alecian E., Wade G.A., Catala C., et al. A high-resolution spectropolarimetric survey of Herbig Ae/Be stars. I. Observations and measurements // Monthly Notices of the Royal Astronomical Society. 6 2013. 6 V. 429. 6 Is 2. 6 pp. 1001-1026.

**42.** Alecian E., Neiner C., Mathis S., et al. The dramatic change of the fossil magnetic field of HD190073: evidence of the birth of the convective core in a Herbig star? // Astronomy and Astrophysics. 6 2013. 6 V. 549. 6 L8-L11.

**43.** Cauley P.W., Johns-Krull C.M. Diagnosing mass-flow around Herbig Ae/Be stars using the HeI 10830 line // Astrophysical Journal. ó 2014. ó V. 797. ó Is. 2. ó A112. ó (21 pp).

**44**.

45.

#### 2015. ó . 41. ó . 444-453.

••

**46.** Takasao S., Tonida K., Kazundari I. et al. A three-dimensional simulation of a magnetized accretion disk: fast funnel accretion onto a weakly-magnetized star // Astrophysical Journal. ó 2018. ó V. 857. ó Is 1. ó article id. 4. ó (25 pp).

**47.** Romanova M.M., Blinova A.A., Ustyugova G.V., et al. Properties of strong and weak propellers from MHD simulations // New Astronomy. ó 2018. ó V. 62. ó pp. 94-114.

//

. .

**48.** 

2008. ó . 34. ó . 259-269. **49.** . .,

• •,

//

. ó 2011. ó . 88. ó 766-780.

**50.** Ermolaeva N.A., Grinin V.P., Dmitriev D.V. Formation of the helium line 10830 Å in biconical winds of Herbig Ae/Be stars // ASP Conf.Ser. ó 2017. ó V. 510. ó pp. 36-39.

**51.** Bacciotti F., Ray T.P., Mundt R., et al. Hubble Space Telescope/STIS spectroscopy of the optical outflow from DG Tauri: indications for rotation in the initial jet channel // Astrophysical Journal. ó 2002. ó V. 576. ó Is. 1. ó pp. 222-231.

**52.** Ferreira J., Dougados C., Cabrit S. Which jet launching mechanism(s) in T Tauri stars? // Astronomy and Astrophysics. ó 2006. ó V. 453. ó pp. 785-796.

**53.** Schöller M., Pogodin M.A., Cahuasqui J.A. et al. Spectroscopic signatures of magnetospheric accretion in Herbig Ae/Be stars. I. The case of HD101412 // Astronomy and Astrophysics. 6 2016. 6 V. 592. 6 pp. 50-57.

**54.** Pogodin M.A. Rapid line-profile variability of H-alpha and H-beta in the A-type shell star HD163296 // Astronomy and Astrophysics. ó 1994. ó V. 282. ó pp. 141-150.

55. Beskrovnaya N.G., Pogodin M.A., Najdenov I.D., et al. Short-term spectral and polarimetric variability in the Herbig Ae star AB Aurigae as an indicator of the

//

. ó

. ó

circumstellar inhomogeneity // Astronomy and Astrophysics. ó 1995. ó V. 298. ó pp. 585-593.

**56.** Beskrovnaya N.G., Pogodin M.A., Yudin R.V., et al. Cyclic phenomena in the circumstellar gaseous envelope of the candidate Herbig A0e star HD163296 // Astronomy and Astrophysics. Supplement Series. ó 1998. ó V. 127. ó pp. 243-249.

**57.** Beskrovnaya N.G., Pogodin M.A., Miroshnichenko A.S., et al. Spectroscopic, photometric and polarimetric study of the Herbig Ae candidate HD36112 // Astronomy and Astrophysics. ó 1999. ó V. 343. ó pp. 163-174.

**58.** Beskrovnaya N.G., Pogodin M.A. Active phenomena in the circumstellar environment of the Herbig Ae star HD31648 // Astronomy and Astrophysics. ó 2004. ó V. 414. ó pp. 955-967.

59. Pogodin M.A., Franco G.A.P., Lopes D.F. Spectroscopic behavior of the unusual Ae star HD190073 // Astronomy and Astrophysics. ó 2005. ó V. 438. ó Is. 1. ó pp. 239-250.
60. Kozlova O.V., Grinin V.P., Chuntonov G.A. Dynamical processes in the neighborhood of the Herbig Ae star MWC 480 based on spectral monitoring data // Astrophysics. ó 2003. ó V. 46. ó Is. 3. ó pp. 265-281.

**61.** Kozlova O.V. Long-term spectral variability of the Herbig Ae star HD179218 // Astrophysics. ó 2004. ó V. 47. ó Is. 3. ó pp. 287-299.

**62**. . ., . . . .

I.

 Ae WW Vul //
 . ó 2006. ó V. 49. ó pp.

 171-185.
 63.
 . .,
 . .,
 . .,
 . .,

 HD 190073 //
 . . ó 2019. ó . . 62. ó . 3.

ó . 357-378.

**64.** Sorelli C., Grinin V.P., Natta A. Infall in Herbig Ae/Be stars: what NaD tell us // Astronomy and Astrophysics. ó 1996. ó V. 309. ó pp. 155-162.

**65.** Kozlova O.V., Grinin V.P., Rostopchina A.N. Non-stationary gas accretion on UX Ori type stars // Astronomy and Astrophysics Transactions. ó 1998. ó V. 15. ó 1. ó pp. 153-157.

66. Rostopchina A.N., Grinin V.P., Shakhovskoi D.N. Cyclic variability of UX OriStars: UX Ori, SV Cep, and RZ Psc //. ó 1999. ó

. 25. ó 4. ó . 291-298.

**67.** Grinin V.P., Kozlova O.V., Rostopchina A.N. Optical spectra of five UX Ori-stars // Astronomy and Astrophysics. ó 2001. ó V. 379. ó pp. 482-495.

**68.** Pogodin M.A., Miroshnichenko A.S., Bjorkman K.S., et al. Spectroscopic behavior of the Herbig Be star HD200775 around its maximum activity in 1997 // Astronomy and Astrophysics. 6 2000. 6 V. 359. 6 pp. 299-305.

**69.** Pogodin M.A., Miroshnichenko A.S., Tarasov A.E. et al. A new phase activity of the Herbig Be star HD200775 in 2001: Evidence for binarity // Astronomy and Astrophysics. ó 2004. ó V.417. ó pp. 715-723.

**70.** Pogodin M.A., Malanushenko V.P., Kozlova O.V., et al. The Herbig B0e star HD53367: circumstellar activity and evidence of binarity // Astronomy and Astrophysics. ó 2006. ó V. 452. ó pp. 551-559.

**71.** Ismailov N.Z., Pogodin M, A., Bashirova U.Z. et al. The Herbig Be star IL Cep A as a long-periodic spectroscopic binary // Astronomy Reports. ó 2020. ó V. 64. ó pp. 23-33.

**72.** Tjin A Djie H.R.E., van den Ancker M.E., Blondel P.F.C., et al. The stellar composition of the formation region CMaR1-II. Spectroscopic and photometric observations of nine young stars // Monthly Notices of the Royal Astronomical Society. 6 2001. 6 V. 325. 6 pp. 1441-1457.

**73.** Claria J.J. Investigation of a Milky Way region in Canis Majoris // Astronomical Journal. ó 1974. ó V. 79. ó pp. 1022-1039.

74. Ezhkova O.V. On the period of GU Canis Majoris // Information Bulletin on Variable Stars. ó 1999. ó 4693. ó pp. 1-2.

75. Praderie F., Catala C., Czarny J., et al. Short term H-alpha variations in two Herbig PMS stars: HR5999 and HD52721 // Astronomy and Astrophysics .Supplement Series. 6 1991. 6 V. 89. 6 pp. 91-103.

76. ESA // The Hipparcos Catalogue ó 1997 ó ESA SP-1200.

**77.** Lafler J., Kinman T.D. An RR Lyrae star survey with the Lick 20-inch astrograph II. The calculation of RR Lyrae periods by electronic computer // Astrophysical Journal Supplement. ó 1965. ó V. 11. ó pp. 216-222.

**78.** Pojmanski G. The All Sky Automated Survey. Catalog of variable stars. I. 0h ó 6h quarter of the southern hemisphere // Acta Astronomica. ó 2002. ó V. 52. ó pp. 397-427.

**79.** Harmanec P. Studies in Be-star variability. I. A remarkable similarity of the rapid periodic light variations of EM Cep, Ori E, and possibly LQ And // Bulletin of the Astronomical Institute of Czechoslovakia. ó 1984. ó V. 35. ó pp. 193-202.

**80.** Devyatkin A.V., Gorshanov D.L., Kouprianov V.V., et al. Apex I and Apex II software packages for the reduction of astronomical CCD observations // Solar System Research. ó 2010. ó V. 44. ó Is. 1. ó pp. 68-80.

**81.** Kouprianov V.V. Distinguishing features of CCD astrometry of faint GEO objects // Advances in Space Research. ó 2008. ó V. 41. ó Iss. 7. ó pp. 1029-1038.

**82.** Molotov I., Agapov V., Titenko V., et al. International scientific optical network for space debris research // Advances in Space Research. ó 2008. ó V. 41. ó Iss. 7. ó pp. 1022-1028.

**83.** Fors O., Nuñez J., Muiños J.L., et al. Telescope Fabra ROA Monte : A new robotic wide field Baker-Nunn facility // Publications of the Astronomical Society of the Pacific. ó 2013. ó V. 125. ó Iss. 927. ó pp. 522-538.

• •,

84.

HD52721:

• •,

// . ó 2015. ó . 41. ó 6. ó .

• •,

/

317-327.

85. Levine S., Chakrabarty D. // IA-UNAM. ó 1994. ó Technical Report. ó Mu-94-04.
86. Piskunov N.E. SYNTH ó a code for rapid spectral synthesis // Stellar Magnetism, Proceedings of international meeting on the problem "Physics and evolution of stars", held in Nizhnij Arkhyz 30 September - 5 October 1991. Edited by Yu.V. Glagolevskij and I.I. Romanyuk. Sankt Petersburg: "NAUKAö. ó 1992. ó p. 92.

87. Hubeny I., Lanz T. NASA/GSPC, Code 681, õTLUSTY ó A user guideö. ó 1997.

**88.** Usov V.V. Stellar wind collision and dust formation in long-period, heavily interacting Wolf-Rayet binaries // Monthly Notices of the Royal Astronomical Society. ó 1991. ó V. 252. ó Iss. 1 ó pp. 49-52.

89. Eggleton P.P. Approximations of the radii of Roche lobes // Astrophysical Journal. ó1983. ó V. 268. ó pp. 368-369.

**90**. Merrill P.W., Burwell C.G. Catalogue and bibliography of stars of classes B and A whose spectra have bright hydrogen lines // Astrophysical Journal. ó 1933. ó V. 78. ó p. 87.

**91.** Swings V.P., Struve O. Spectrographic observations of peculiar stars // Astrophysical Journal. ó 1943. ó V.97. ó pp. 194-224.

**92**. Oudmaijer R.D., van der Veen, W.E.C.J., Waters L.B.F.M., et al. SAO stars with infrared excess in the IRAS Point Sours Catalog // Astronomy and Astrophysics. Supplement Series. ó 1992. ó V. 96. ó pp. 625-643.

**93**. van den Ancker M.E., de Winter D., Tijn A Dije M.R.E. HIPPARCOS photometry of Herbig Ae/Be stars // Astronomy and Astrophysics. ó 1998. ó V. 330. ó pp. 145-154.

**94.** de Winter D., van den Ancker M.E., Maira A., et al. A photometric catalogue of southern emission stars // Astronomy and Astrophysics. ó 2001. ó V. 380. ó 2. ó pp. 609-614.

**95.** Böhm T., Catala C. Rotation, winds and active phenomena in Herbig Ae/Be stars // Astronomy and Astrophysics. ó 1995. ó V. 301. ó pp. 155-169.

**96.** Tetzlaff N., Neuhäuser R., Hohle M.M. A catalogue of young runaway Hipparcos stars within 3 kps from the Sun // Monthly Notices of the Royal Astronomical Society. 6 2011. 6 V. 410. 6 pp. 190-200.

**97.** Wheelwright H.E., Oudmaijer R.D., Goodwin S.P. The mass ratio and formation mechanisms of Herbig Ae/Be star binary systems // Monthly Notices of the Royal Astronomical Society. 6 2010. 6 V. 401. 6 Iss. 2. 6 pp. 1199-1218.

**98.** Bagnulo S., Fossati L., Landstreet J.D., et al. The FORS1 catalogue of stellar magnetic field measurements // Astronomy and Astrophysics. ó 2015. ó V. 583. ó A115. ó (pp. 37).

99. Rucinski S.M., Zwintz K., Hareter M., et al. Photometric variability of the Herbig Ae star HD37806 // Astronomy and Astrophysics. ó 2010. ó V. 522. ó A113. ó (pp. 8).
100. Reiter M., Calvet N., Thanathibodee Th., et al. Linking signatures of accretion and magnetic field measurements ó line profiles are not significantly different in magnetic and non- magnetic Herbig Ae/Be stars // Astrophysical Journal. ó 2018. ó V. 852. ó Iss. 1. ó A5. ó (12 pp.).

101. Arun R., Mathew B., Manoj P., et al. On the mass accretion rate and infrared excess in Herbig Ae/Be stars // Astrophysical Journal. ó 2019. ó V. 157. ó 4. ó A159. ó (10 pp.).

**102.** Kluska J., Olofsson H., van Vinkel H., et al. A family portrait of disk inner rims around Herbig Ae/Be stars. Hunting for warps, rings, self shadowing, and misalignments in the inner astronomical units // Astronomy and Astrophysics. ó 2020. ó V 636. ó A116. ó (22 pp.).

**103.** Launhardt R., Henning T., Quirrenbach A., et al. ISPY ó NACO Imaging survey for planets around young stars. Survey description and results from the first 2.5 years of observations // Astronomy and Astrophysics. ó 2020. ó V. 635. ó A162. ó (23 pp.).

**104.** Boccaletti A., Di Folco E., Pantin E., et al. Possible evidence of ongoing planet formation in AB Aurigae. A showcase in the SPHERE/ALMA synergy // Astronomy and Astrophysics. ó 2020. ó V. 637. ó AL5. ó (6 pp.)

**105.** Kreplin A., Tambovtseva L., Grinin V., et al. On the Br line emission of the Herbig Ae/Be star MWC120 // Monthly Notices of the Royal Astronomical Society. ó 2018. ó V. 476. ó Iss. 4 ó pp. 4520-4526.

**106.** Harrington D.M., Kuhn J.R. Spectropolarimetric observations of Herbig Ae/Be stars. II. Comparison of spectropolarimetric surveys: Haebe, Be and other emission-line stars // Astrophysical Journal. Supplement. Series. ó 2009. ó V. 180. ó 1. ó pp. 138-181.

107. Oudmaijer R.D., Drew J.E. ó õH spectropolarimetry of B[e] and Herbig Be stars
// Monthly Notices of the Royal Astronomical Society. ó 1999. ó V. 305. ó Iss. 1. ó pp. 166-180.

108. Vink J.S., Drew J.E., Harries T.J., et al. Probing the circumstellar structure of Herbig Ae/Be stars // Monthly Notices of the Royal Astronomical Society. ó 2002. ó V. 337. ó Iss. 1. ó pp. 356-368.

109. Mottram J.C., Vink J.S., Oudmaijer R/D., et al. On the difference between Herbig Ae and Herbig Be stars // Monthly Notices of the Royal Astronomical Society. ó 2007. ó V. 377. ó Iss. 3. ó pp. 1363-1374.

110. Beals C.S. The spectra of the P Cygni stars // Publications of the Dominion Astrophysical Observatory. ó 1953. ó V. 9. ó pp. 1-137.

111.

• •,

. .

	•••, ••	
	8	MWC419
//	. ó 2007. ó . 50. ó	2. ó . 259-280.

112. Bouvier J., Alencar S.H.P., Boutelier T. Magnetospheric accretion-ejection process in the classical T Tauri star AA Tau // Astronomy and Astrophysics. ó 2007. ó V. 463. ó Iss. 3. ó pp. 1017-1028.

113.

. ó 2017. ó . 60. ó . 205-218.

114. Wang Y.-M. Location of the inner radius of the magnetospherically threaded accretion disk // Astrophysical Journal Letters. ó 1996. ó V. 465. ó pp. 111-113.

//

115. Donehew B., Brittain S. Measuring the stellar accretion rates of Herbig Ae/Be stars // Astronomical Journal. ó 2011. ó V. 141. ó Iss. 2. ó A46. ó (10 pp.).

		(JD2455000+í)	$P=1^{d}.610$
1	2	3	4
	HeI 6678	129.503	0.940
24.10.09	Н	129.535	0.960
	DNaI	129.558	0.974
	HeI 6678	129.590	0.994
	HeI 6678	129.611	0.007
	HeI 6678	129.632	0.020
	HeI 6678	130.563	0.598
25 10 00	Н	130.585	0.612
25.10.09	DNaI	130.614	0.630
	HeI 6678	130.632	0.641
	HeI 6678	134.599	0.105
29.10.09	HeI 6678	134.620	0.118
	HeI 6678	134.643	0.132
	HeI 6678	136.527	0.302
	HeI 6678	136.548	0.315
31.10.09	HeI 6678	136.574	0.331
	Н	136.597	0.346
	DNaI	136.632	0.368
26 11 00	Н	162.580	0.483
26.11.09	HeI 6678	162.596	0.493
	HeI 6678	168.472	0.142
01.12.09	HeI 6678	168.542	0.188
	HeI 6678	168.561	0.199
	HeI 6678	168.573	0.205
	HeI 6678	277.235	0.690
21.03.10	HeI 6678	277.256	0.704
	DNaI	277.319	0.743
	HeI 6678	278.215	0.299
22 02 10	HeI 6678	278.236	0.312
22.03.10	DNaI	278.269	0.333
	Н	278.284	0.341
	HeI 6678	279.219	0.923
22 02 10	HeI 6678	279.242	0.937
25.05.10	Н	279.262	0.950
	DNaI	279.289	0.966

1	(
-	1

1	2	3	4
	Н	281.223	0.154
	HeI 6678	281.243	0.167
25.03.10	HeI 6678	281.265	0.181
	DNaI	281.298	0.201
	Н	282.218	0.785
26.02.10	HeI 6678	282.235	0.795
26.03.10	HeI 6678	282.256	0.809
	DNaI	282.285	0.827
20.02.10	Н	284.265	0.057
	HeI 6678	284.282	0.068
28.05.10	HeI 6678	284.303	0.080
	DNaI	284.332	0.098
	Н	492.521	0.396
22 10 10	HeI 6678	492.544	0.410
22.10.10	HeI 6678	492.563	0.422
	DNaI	492.583	0.434
	Н	493.546	0.032
23.10.10	HeI 6678	493.568	0.046
	HeI 6678	493.590	0.060

)

## HD37806,

(1) ó , (4) ó

, (2) , (5) ó V/R , (2) ó

_

, (3) ó MJD

	(7)	~
•	( )	0

27.02.13

6350.728

Η

, (6) ó

	· 、 ·					
		MJD (50000+)		N	S/N	V/R(H)
(1)	(2)	(3)	(4)	(5)	(6)	(7)
1	24.11.09	5159.929	Н	3	105	0.64
2	25.11.09	5160.925	Н	3	60	0.64
3	26.11.09	5161.967	Н	2	90	0.67
4	26.11.09	5161.991	He,Na	1	70	
5	01.12.09	5165.961	Н	3	75	0.79
6	01.12.09	5166.012	Н	2	100	
7	22.02.10	5249.825	Н	3	60	0.63
8	19.03.10	5274.763	Н	3	95	0.68
9	13.03.11	5633.794	Н	3	50	0.49
10	07.11.11	5872.981	Н	3	95	0.60
11	07.11.11	5873.009	He,Na	3	135	
12	03.01.12	5929.896	Н	3	110	0.61
13	03.01.12	5929.924	He,Na	3	130	
14	08.11.12	6239.120	Н	8	150	0.38
15	08.11.12	6239.125	He,Na	1	65	
16	08.11.12	6239.900	Н	2	90	0.43
17	08.11.12	6240.020	He,Na	10	210	
18	09.11.12	6240.930	Н	6	45	0.45
19	09.11.12	6240.960	He,Na	6	50	
20	11.11.12	6243.000	Н	9	180	0.49
21	11.11.12	6243.011	He,Na	9	180	
22	01.01.13	6293.819	Н	4	85	0.34
23	01.01.13	6293.903	He,Na	4	115	
24	02.01.13	6294.800	Н	3	55	0.32
25	02.01.13	6294.885	He,Na	5	45	
26	27.02.13	6350.728	Н	4	70	0.56

Η

ASP-14

(1)	(2)	(3)	(4)	(5)	(6)	(7)
27	27.02.13	6350.793	He,Na	3	95	
28	03.03.13	6354.713	Н	4	90	0.40
29	03.03.13	6354.786	He,Na	3	80	
30	06.03.13	6357.712	Н	3	75	0.48
31	06.03.13	6357.791	He,Na	3	95	
32	20.03.13	6371.785	He,Na	2	100	

)

## HD37806,

(1)	ó
-----	---

, (4) ó

	, (2)	ó
,	(5) ó	

# , (3) ó MJD , (6) ó , 5000Å), (7)

ó

V/R

Η	

_

[	S/N	V/R(H)
)	(6)	(7)

		MJD		N	S/N	V/R(H)
		(50000+)		1	5/11	V/R(II )
(1)	(2)	(3)	(4)	(5)	(6)	(7)
1	15.12.13	6641.893	Н	3	73	0.58
2	15.12.13	6641.963	H ,He,Na,Fe	4	120	
3	11.02.14	6699.741	Н	2	100	0.44
4	11.02.14	6699.782	H ,He,Na,Fe	2	140	
5	09.11.14	6970.002	H ,He,Na,Fe	4	115	
6	09.11.14	6970.045	Н	4	20	0.54
7	04.11.15	7330.984	Н	3	95	0.69
8	05.11.15	7331.054	H ,He,Na,Fe	3	170	
9	06.11.15	7332.024	Н	3	55	0.67
10	06.11.15	7332.106	H ,He,Na,Fe	2	155	
11	26.12.15	7382.920	Н	3	95	0.38
12	11.11.16	7703.931	Н	2	80	0.37
13	12.11.16	7704.007	H ,He,Na,Fe	3	160	
14	12.11.16	7704.870	Н	3	30	0.34
15	13.11.16	7705.092	H ,He,Na,Fe	3	50	
16	06.03.17	7818.700	Н	2	80	0.76
17	06.03.17	7818.789	H ,He,Na,Fe	4	145	
18	07.03.17	7819.750	H ,He,Na,Fe	2	115	
19	07.03.17	7819.778	Н	2	75	0.70
20	08.03.17	7820.754	H ,He,Na,Fe	1	180	
21	09.03.17	7821.754	H ,He,Na,Fe	4	205	
22	09.03.17	7821.772	Н	2	110	0.77
23	12.03.17	7824.695	Н	2	75	0.92
24	12.03.17	7824.763	H ,He,Na,Fe	2	105	
25	25.11.17	8082.066	Н	3	155	1.05
26	26.11.17	8083.000	Н	4	105	0.97

3
				3 (		
(1)	(2)	(3)	(4)	(5)	(6)	(7)
27	03.12.17	8090.823	Н	3	35	1.19
28	03.12.17	8090.909	H ,He,Na,Fe	3	80	
29	05.12.17	8092.917	Н	2	15	1.24
30	05.12.17	8092.975	H ,He,Na,Fe	3	80	
31	08.12.17	8095.907	Н	2	40	1.26
32	08.12.17	8095.967	H ,He,Na,Fe	3	250	
33	09.12.17	8096.908	Н	2	25	1.00
34	09.12.17	8096.960	H ,He,Na,Fe	2	90	
35	02.01.18	8120.955	Н	1	25	1.01
36	03.01.18	8121.713	Н	1	25	1.04
37	07.01.18	8125.848	Н	2	90	0.77
38	07.01.18	8125.919	H ,He,Na,Fe	4	155	
39	01.02.18	8150.686	Н	4	25	1.02
40	01.02.18	8150.774	H ,He,Na,Fe	4	50	
41	23.09.18	8384.095	Н	2	85	0.72
42	29.10.18	8420.053	H ,He,Na,Fe	3	220	
43	29.10.18	8420.108	Н	2	110	0.66
44	23.11.18	8445.053	H ,He,Na,Fe	3	160	
45	23.11.18	8445.090	Н	2	85	0.61
46	24.11.18	8445.979	H ,He,Na,Fe	3	130	
47	24.11.18	8446.033	Н	3	90	0.63
48	17.01.19	8500.714	Н	1	50	0.53
49	17.01.19	8500.767	H ,He,Na,Fe	2	120	

)