うして ふゆう ふほう ふほう うらつ

Динамическая эволюция высокоорбитальных космических объектов в окрестности резонансов

Э.Д.Кузнецов, П.Е.Захарова, Д.В.Гламазда

Коуровская астрономическая обсерватория Уральский федеральный университет

Всероссийская астрометрическая конференция 21–25 сентября 2015 г., ГАО РАН

Численное моделирование

・ロト ・ 日 ・ モート ・ 田 ・ うへで

Выводы 0000000

Содежание

1) Введение

- 2 Аналитическое приближение
 - Критические аргументы и их частоты
 - Резонансы p:q

З Численное моделирование

- Численная модель
- Динамическая эволюция в окрестности резонансов высоких порядков

4 Выводы

• Результаты

Численное моделирование

Введение

Долгопериодическая эволюция в окрестности высокоэллиптических орбит

- Обеспечение безопасной работы активных спутников
- Вековые возмущения большой полуоси
 - Сопротивление атмосферы
 - Влияние эффекта Пойнтинга-Робертсона
- Долгопериодическая эволюция эксцентриситетов и наклонов, обусловленная эффектом Лидова–Козаи
- Прохождение через области резонансов высоких порядков
- Формирование стохастических траекторий

Численное моделирование

Методы

Аналитические

- Вычисление резонансных значений больших полуосей
- Определение критических аргументов

Численные

- Уточнение положений и размеров зон резонансов высоких порядков
- Получение оценок вековых возмущений больших полуосей орбит
- Вычисление интегральной автокорреляционной функции

Численное моделирование

(ロ) (型) (E) (E) (E) (O)

Выводы 0000000

Критические аргументы и их частоты

Введение

- 2 Аналитическое приближение
 - Критические аргументы и их частоты
 - Резонансы *p*:*q*

Численное моделирование

- Численная модель
- Динамическая эволюция в окрестности резонансов высоких порядков
- 🕢 Выводы
 - Результаты

Аналитическое приближение 0000000 Численное моделирование

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Критические аргументы и их частоты

Критические аргументы (Allan 1967)

$$\Phi_1 = p(M + \Omega + g) - qS = \Phi_{10} + \nu_1(t - t_0)$$

$$\Phi_2 = p(M + g) + q(\Omega - S) = \Phi_{20} + \nu_2(t - t_0)$$

$$\Phi_3 = pM + q(g + \Omega - S) = \Phi_{30} + \nu_3(t - t_0)$$

- М средняя аномалия
- Ω долгота восходящего узла
- g аргумент перицентра
- 5 гринвичское звездное время
- р, q целые числа

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - の Q @

Критические аргументы и их частоты

Частоты критических аргументов

$$\nu_1 = p(n_M + n_\Omega + n_g) - q\omega$$

$$\nu_2 = p(n_M + n_g) + q(n_\Omega - \omega)$$

$$\nu_3 = pn_M + q(n_g + n_\Omega - \omega)$$

- *n_M* среднее движение спутника
- *n*_g угловая скорость движения перицентра
- *п*_Ω угловая скорость движения узла
 - *w* угловая скорость вращения Земли

Аналитическое приближение

Численное моделирование

(ロ) (型) (E) (E) (E) (O)

Выводы 0000000

Резонансы р:q

Содержание

Введение

2 Аналитическое приближение

• Критические аргументы и их частоты

• Резонансы p:q

Численное моделирование

- Численная модель
- Динамическая эволюция в окрестности резонансов высоких порядков
- 🕢 Выводы
 - Результаты

Аналитическое приближение

Численное моделирование

イロト イポト イヨト イヨト

Выводы 0000000

Резонансы р:q

Типы резонансов

Резонанс п типа

$\nu_1\approx 0$

Резонанс *p*:*q* между средним движением спутника *n*_M и угловой скоростью вращения Земли *ω*

Резонанс і типа

$\nu_2\approx 0$

Положение восходящего узла орбиты

периодически повторяется во вращающейся системе координат

Резонанс е типа

$\nu_3 \approx 0$

Положение линии апсид орбиты

периодически повторяется во вращающейся системе координат

Аналитическое приближение

Численное моделирование

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Выводы 0000000

Резонансы р:q

Среднее движение *n_M* и угловые скорости *n_g* и *n*_Ω

Вычисляются с учетом вековых возмущений от

- сжатия Земли
- притяжения Луны
- притяжения Солнца
- светового давления

Аналитическое приближение 00000000 Численное моделирование

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Выводы 0000000

Резонансы р:q

Оценка резонансных значений большой полуоси

Начальные условия

Высокоэллиптические орбиты

- эксцентриситет 0.65
- критический наклон 63.4°
- значения большой полуоси варьируются от 26000 км до 27100 км
- условия $u_1 = 0, \
 u_2 = 0$ и $u_3 = 0$

Аналитическое приближение 0000000 Численное моделирование

Выводы 0000000

Резонансы р:q

17 резонансов высоких порядков *p*:*q*

 $16 \leqslant |p| \leqslant 25$ $33 \leqslant |q| \leqslant 49$

Порядки pезонансов: $49 \leqslant |p| + |q| \leqslant 74$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Аналитическое приближение 00000000

Численное моделирование •••••••

(ロ) (型) (E) (E) (E) (O)

Выводы 0000000

Численная модель

Введение

- Аналитическое приближение
 - Критические аргументы и их частоты
 - Резонансы р: q

З Численное моделирование

- Численная модель
- Динамическая эволюция в окрестности резонансов высоких порядков

🕘 Выводы

• Результаты

Аналитическое приближение

 Выводы 0000000

Численная модель

Численная модель движения искусственного спутника Земли (Бордовицына и др., 2007)

Модель разработана в

• НИИ Прикладной математики и механики Томского государственного университета

Интегратор

• Метод Эверхарта 19 порядка

Интервал интегрирования

• 24 года

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 のへで

Аналитическое приближение 00000000

 Выводы 0000000

Численная модель

Модель возмущающих сил

- Гравитационный потенциал Земли (модель EGM96, учитываются гармоники до 27 порядка и степени включительно)
- Притяжение Луны и Солнца
- Приливы в теле Земли
- Прямое световое давление с учетом эффекта тени Земли (коэффициент отражения поверхности объекта k = 1.44)
- Эффект Пойнтинга-Робертсона
- Сопротивление атмосферы

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - 釣�?

Аналитическое приближение 00000000

Численное моделирование

うして ふゆう ふほう ふほう うらつ

Выводы 0000000

Численная модель

Начальные условия

Высокоэллиптические орбиты

- *а*₀ выбирается в соответствии с резонансными условиями, полученными на основе аналитической аппроксимации
- $e_0 = 0.65$
- критический наклон i₀ = 63.4°
- $g_0 = 270^\circ$
- $\Omega_0=0^\circ$, 90° , 180° и 270°
- отношение площади миделева сечения к массе

A/m = 0.02, 0.2 и 2 м²/кг

(ロ) (型) (E) (E) (E) (O)

Динамическая эволюция в окрестности резонансов высоких порядков

Содержание

🚺 Введение

- Аналитическое приближение
 - Критические аргументы и их частоты
 - Резонансы р: q
- 3 Численное моделирование
 - Численная модель
 - Динамическая эволюция в окрестности резонансов высоких порядков

4 Выводы

• Результаты

Аналитическое приближение

Численное моделирование

Выводы 0000000

Динамическая эволюция в окрестности резонансов высоких порядков

<u>Резонансы</u>

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Аналитическое приближение

Численное моделирование

Выводы 0000000

Динамическая эволюция в окрестности резонансов высоких порядков

Эволюция эксцентриситета *е*

$\Omega_0=90^\circ$, $A/M=0.02~{ m m}^2/{ m kr}$

Численное моделирование

Выводы 0000000

Динамическая эволюция в окрестности резонансов высоких порядков

Эволюция наклона *і*

$\Omega_0=90^\circ$, A/M=0.02 м $^2/\kappa$ г

Численное моделирование

Выводы 0000000

Динамическая эволюция в окрестности резонансов высоких порядков

Область резонанса 22:45

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 … のへで

Аналитическое приближение 00000000

Численное моделирование

Выводы 0000000

Динамическая эволюция в окрестности резонансов высоких порядков

Эволюция большой полуоси *а* в окрестности резонанса 22:45

 $\overline{a_0 = 26162}$ км, $\Omega_0 = 90^\circ$, A/M = 0.02 м $^2/$ кг

Аналитическое приближение 00000000

Численное моделирование

Выводы 0000000

Динамическая эволюция в окрестности резонансов высоких порядков

Эволюция эксцентриситета *е* и аргумента перицентра *g* в окрестности резонанса 22:45

$$\Omega_0 = 0^{\circ} \ \Omega_0 = 90^{\circ} \ \Omega_0 = 180^{\circ} \ \Omega_0 = 270^{\circ}$$

< 回 > < 回 > < 回 > <

Э

Численное моделирование

Выводы 0000000

Динамическая эволюция в окрестности резонансов высоких порядков

Эволюция наклона *і*

в окрестности резонанса 22:45

$$\begin{split} \Omega_0 &= 0^\circ \\ \Omega_0 &= 90^\circ \\ \Omega_0 &= 180^\circ \\ \Omega_0 &= 270^\circ \end{split}$$

∃⇒

Аналитическое приближение

 Выводы 0000000

Динамическая эволюция в окрестности резонансов высоких порядков

Эволюция критического аргумента Ф₁ в окрестности резонанса 22:45

 $a_0=26162$ км, $\Omega_0=180^\circ$, A/m=0.02 м $^2/$ кг

Аналитическое приближение

Численное моделирование

Выводы 0000000

Динамическая эволюция в окрестности резонансов высоких порядков

Эволюция критического аргумента Ф₂ в окрестности резонанса 22:45

 $a_0=26162$ км, $\Omega_0=90^\circ$, A/m=0.02 м $^2/$ кг

Аналитическое приближение 00000000

Численное моделирование

Выводы 0000000

Динамическая эволюция в окрестности резонансов высоких порядков

Эволюция критического аргумента Ф₃ в окрестности резонанса 22:45

$a_0 = 26162$ км, $\Omega_0 = 90^\circ$, A/m = 0.02 м $^2/$ кг

Аналитическое приближение 00000000

Численное моделирование

Выводы 0000000

Динамическая эволюция в окрестности резонансов высоких порядков

Эволюция большой полуоси *а* в окрестности резонанса 22:45

 $a_0=26162\,$ км, $\Omega_0=90^\circ$, $A/m=2\,$ м $^2/$ кг

Численное моделирование

Выводы 0000000

Динамическая эволюция в окрестности резонансов высоких порядков

Эволюция эксцентриситета *е* и аргумента перицентра *g* в окрестности резонанса 22:45

 $a_0=26162$ км, $\Omega_0=90^\circ$, A/m=2 м $^2/$ кг

Численное моделирование

Выводы 0000000

Динамическая эволюция в окрестности резонансов высоких порядков

Эволюция наклона *і*

в окрестности резонанса 22:45

 $a_0=26162$ км, $\Omega_0=$ 90° , A/m=2 м $^2/\kappa r$

Аналитическое приближение 00000000

Численное моделирование

Выводы 0000000

Динамическая эволюция в окрестности резонансов высоких порядков

Эволюция критического аргумента Ф₁ в окрестности резонанса 22:45

 $a_0=26162$ км, $\Omega_0=90^\circ$, A/m=2 м $^2/$ кг

200

Аналитическое приближение

Численное моделирование

Выводы 0000000

Динамическая эволюция в окрестности резонансов высоких порядков

Эволюция большой полуоси *а* в окрестности резонанса 22:45

$a_0=26162$ км, $\Omega_0=33^\circ$, A/m=14 м $^2/кг$

Аналитическое приближение 00000000

Численное моделирование

Выводы 0000000

Динамическая эволюция в окрестности резонансов высоких порядков

Эволюция эксцентриситета е в окрестности резонанса 22:45

$a_0=26162$ км, $\Omega_0=33^\circ$, A/m=14 м $^2/$ кг

Аналитическое приближение 00000000

Численное моделирование

Выводы 0000000

Динамическая эволюция в окрестности резонансов высоких порядков

Эволюция критического аргумента Φ_1 в окрестности резонанса 22:45

$a_0=26162$ км, $\Omega_0=33^\circ$, A/m=14 м $^2/$ кг

Аналитическое приближение 00000000

Численное моделирование

Выводы 0000000

Динамическая эволюция в окрестности резонансов высоких порядков

Диапазон изменения эксцентриситета орбиты

*a*₀ = 26162 км

Аналитическое приближение 00000000

Численное моделирование

Выводы 0000000

Динамическая эволюция в окрестности резонансов высоких порядков

Диапазон изменения наклона орбиты

*a*₀ = 26162 км

Численное моделирование

(ロ) (型) (E) (E) (E) (O)

Результаты

Содержание

Введение

- Аналитическое приближение
 - Критические аргументы и их частоты
 - Резонансы р: q
- 3 Численное моделирование
 - Численная модель
 - Динамическая эволюция в окрестности резонансов высоких порядков

Аналитическое приближение 00000000

Численное моделирование

・ロト ・ 日 ・ モート ・ 田 ・ うへで

Выводы 0●00000

Результаты

Формирование стохастических траекторий

Влияние эффекта Пойнтинга-Робертсона

- Вековое уменьшение большой полуоси для сферически-симметричного спутника с A/m = 2 м²/кг в окрестности резонанса 22:45 составляет около 0.5 км/год
- Вековые возмущения большой полуоси немного уменьшаются в областях резонансов
- Объекты проходят через области резонансов высоких порядков

0			
KDA		14	0
	шс	 21	

Численное моделирование

Выводы 00●0000

Результаты

Интегральная автокорреляционная функция ${\cal A}$

$\mathcal{A} ightarrow 1$

• для постоянного временного ряда

$\mathcal{A} ightarrow 0.5$

 для временного ряда, представляемого периодической функцией типа синус

 $\mathcal A$ стремится к конечному значению, близкому к 0.5

для других периодических и квазипериодических

временных рядов

$\mathcal{A} ightarrow 0$

для хаотических орбит

Введение	Аналитическое приближение 00000000	Численное моделирование 000000000000000000000000000000000000	Выводы 000●00
Результаты			
Интегральн	ая автокорреляционн	ая функция ${\cal A}$ для	
большой по	олуоси <i>а</i> в окрестност	и резонанса 22:45	

Введение	Аналитическое приближение 00000000	Численное моделирование 000000000000000000000000000000000000
Результаты		
Интегральн	ая автокорреляционн	ая функция ${\mathcal A}$ для
координат	в окрестности резонан	нса 22:45

*а*₀ = 26162 км

Выводы 0000●00

Численное моделирование

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ の へ ()

Результаты

Заключение

- Вековые возмущения большой полуоси
 - эффект Пойнтинга-Робертсона
 - сопротивление атмосферы
 - в случае, если сопротивление атмосферы не является доминирующим по отношению к влиянию эффекта Пойнтинга–Робертсона
- ведут к формированию слабо стохастических траекторий в области высокоэллиптических орбит.

Численное моделирование

Спасибо за внимание!

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = 釣�?