

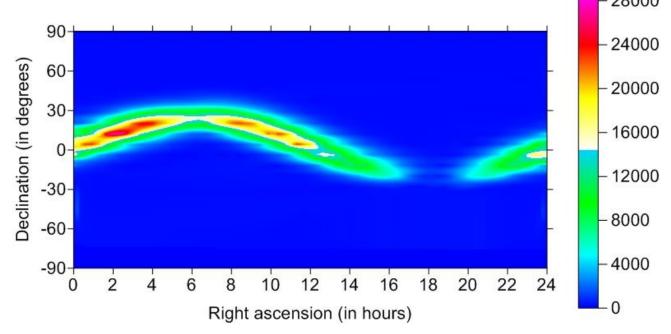
Определение ориентации звездных каталогов относительно динамических систем DE405 по наблюдениям нумерованных астероидов

Кузнецов В.Б., Медведев Ю.Д., Чернетенко Ю.А. Институт прикладной астрономии РАН

Введение

Быстрый рост числа открываемых малых тел, количественный и качественный рост их наблюдений делает возможным решения целого ряда задач координатно-временного и навигационного обеспечения. Это задачи:

- 1. определения высокоточных орбитальных параметров астероидов и комет;
- 2. вычисление масс астероидов из их взаимных возмущений;
- 3. оценка систематических ошибок и поправок нуль—пунктов звездных каталогов из обработки наблюдений астероидов.


Введение

- В настоящее время в ИПА РАН производится ежемесячное вычисление элементов всех нумерованных астероидов.
- На основе этих орбит вычисляются эфемериды астероидов —пакеты MUSE и AMPLE 3, а также подготавливается к печати ежегодник "Эфемериды малых планет.

По 111 394 532 позиционным наблюдениям 427 393 астероидов определить параметры вращения систем координат семи современных звездных каталогов, полученных в системе каталога Tycho 2, относительно динамических эфемерид DE405.

Всероссийская астрометрическая конференция "Пулково-2015"

Динамическая модель

- Учитывались гравитационные возмущения от всех больших планет, Цереры, Паллады, Весты и Плутона
- Включены поправки за релятивистские возмущения от Солнца
- Возмущения от Земли и Луны учитывались раздельно
- Координаты возмущающих планет вычислены по численной эфемериде DE405

Редукция наблюдений: систематические ошибки каталогов

R		
	\mathcal{A}	

Каталог	Число звезд	Каталог	Число звезд
USNO-A2.0+USNO-SA2.0	581 649 120	SDSS-DR7	357 175 411
UCAC-2	48 330 571	GSC-ACT	18 836 912
USNO-B1.0	1 045 175 762	CMC-14	95 858 475
2MASS	470 992 970	Tycho-2	2 430 468
UCAC-4	113 780 093	ACT	988 758
UCAC-3	100 766 420	PPMXL	910 468 688
USNO-A1.0+USNO-SA1.0	542 794 484	NOMAD	1 117 612 732
GSC-1.1	18 836 912	PPM	378 910
UCAC-1	27 425 433	GSC-1.2	18 841 548

Для уменьшения влияния систематических (возникающих из-за ошибок элементов астероидов) и случайных ошибок при вычислениях часть наблюдений отбраковывалась. Ошибки оценивалось по элементам корреляционной матрицы по формуле:

$$C_{\alpha,\delta} = \sigma_0^2 A_i C_E A_i^T$$

Исключали О–С, для которых значения дисперсии ошибок Вычисленных положений были больше 0.09".

Для уменьшения влияния случайной составляющей ошибки исключались О–С, для которых величина

$$\chi_i^2 = (\alpha_i^o - \alpha_i^c)^2 \cos^2 \delta + (\delta_i^o - \delta_i^c)^2 > 5''$$

Основные формулы

Система координат опорного каталога определяется углами вращения относительно осей динамической системы координат

$$\varepsilon_{xt} = \varepsilon_x + \omega_x(t - t_0), \varepsilon_{yt} = \varepsilon_y + \omega_y(t - t_0), \varepsilon_{zt} = \varepsilon_z + \omega_z(t - t_0)$$

Для О-С можно написать следующие соотношения:

$$\cos\delta\Delta\alpha = \cos\alpha\sin\delta(\varepsilon_{xt}) + \sin\alpha\sin\delta(\varepsilon_{yt}) - \cos\delta(\varepsilon_{zt}),$$

$$\Delta\delta = -\sin\alpha(\varepsilon_{xt}) + \cos\alpha(\varepsilon_{yt})$$

Результаты

Каталог	Углы вращения, mas			S	O-C	N	σ
	$\mathcal{E}_{_{X}}$	$\boldsymbol{\mathcal{E}}_{\mathrm{y}}$	\mathcal{E}_z	mas	mas		"
USNO-A1.0+ USNO-SA1.0	43.4±0.7	-9.5±0.5	19.4±0.5	48	6	1 767 112	0.40
USNO-A2.0+ USNO-SA2.0	-20.5 ± 0.1	-0.7 ± 0.1	26.7±0.1	34	31	33 658 056	0.38
USNO-B1.0	18.0±0.2	-6.1 ± 0.1	-84.8 ± 0.1	87	-25	14 501 466	0.29
UCAC-2	38.2±0.1	0.7 ± 0.1	30.5 ± 0.1	49	-9	29 344 698	0.32
UCAC-3	27.8±0.5	-41.9±0.4	16.4±0.3	53	7	2 388 138	0.31
UCAC-4	-39.0 ± 0.3	22.1±0.2	10.5±0.2	46	40	7 290 156	0.31
2MASS	7.2±0.1	-0.7 ± 0.1	53.4±0.2	54	55	15 218 890	0.18

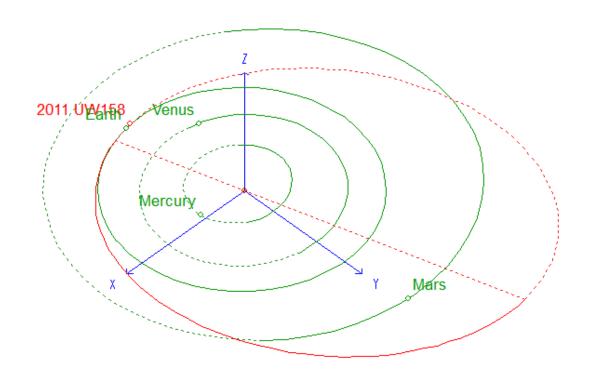
Выводы по результатам вычислений

- Системы координат каталогов UCAC-2, UCAC-3, UCAC-4 и 2MASS, полученные в системе каталога Тусhо 2, смещены относительно системы DE405 на $\sim 50 \ mas$.
- Если ориентироваться на результаты для 2MASS, как наиболее точного каталога, это смещение определяется углом ε_z , т.е. смещением вдоль эклиптики.

О связи динамической системы и ICRF

- Предлагается запустить к нескольким астероидам космические аппараты, оснащенные передатчиками, позволяющими производить РСДБ наблюдения, а также определять расстояние и лучевую скорость аппарата и астероида.
- Большое разнообразие орбит открытых астероидов позволяет подобрать наиболее удобные для более эффективного решения задачи связи динамической системы и ICRF.

Наблюдения трех астероидов на фоне квазаров



Проделаны модельные вычисления, цель которых была оценить значения ошибок в углах ориентации и угловых скоростях динамической системы относительно системы ICRF, полученных по движению астероидов (99942) Apophis, 2011 UW158 и 2012 TC4.

Предполагается, что астероиды наблюдаются методами РСДБ на фоне квазаров.

Астероиды, сближающиеся с Землей

Модельные расчеты

Ошибки в углах ориентации и угловых скоростях динамической системы относительно системы ICRF

$\Delta \mathcal{E}_{_{X}}$	$\Delta \mathcal{E}_{\mathrm{y}}$	$\Delta \mathcal{E}_z$	$\Delta\omega_{_{\chi}}$	$\Delta\omega_{_{ m y}}$	$\Delta\omega_z$
1.3 μs	2.1	0.6	0.7 μs/год	0.4	0.5

Уточнение положений и скоростей этих астероидов с точностью до 1 м и нескольких сотых миллиметров в секунду

- Проведенные вычисления показывают, что использование астероидов как реперных тел Солнечной системы позволяет строить систему базовых тел в Солнечной системе с метровой точностью.
- Наблюдения квазаров и астероидов позволят осуществить привязку динамической системы к ICRF в оптическом диапазоне.
- Наблюдение одних и тех же астероидов в радио и оптическом диапазонах позволяет сформулировать ряд новых задач, в частности степень совпадения ICRF в различных длинах волн.

Спасибо за внимание!