

The Radio Fundamental Catalogue

Leonid Petrov Astrogeo Center, USA

The first fundamental catalogue

Normal Star Catalogue (4 century BC?)

Accuracy: 0.02 rad.

State of the fundamental radio astrometry on 2015.08.01:

sources: 9510

percentile of accuracy:

20%	< 0.25	mas
50% (median)	< 0.62	mas
80%	< 2.0	mas
90%	< 4.0	mas
97%	< 12	mas

Flux density @ X-band: [0.003, 22] Jy, median: 120 mJy

Observed band:		Number of observing sessions
Dual-band:	51%	1 55%
8 GHz	37%	1-2 77%
5 GHz	9%	1–5 90%
22 GHz	2%	10+ 8%
2 GHz	1%	100+3%

State-of-the-art at the XXth century: 666 objects

State-of-the-art at the XXIth century: 9510 objects

Completeness of RFC

 $\log N$ versus $\log S$ diagram. $S_{\rm corr}$ @ 8 GHz at baselines 200–1000 km

Source sky distribution (complete subsample of 3000 objects)

Source distribution at the southern hemisphere

Comparison with NOMAD catalogue

In total, there are 5951 matches (62%)

There are 2271 optical counterparts brighter B 18^m . There are 4596 optical counterparts brighter B 20^m .

Comparison with NOMAD catalogue

There are 5988 matches with NOMAD (62%).

1- σ error **234 mas** (**210 mas**)

NOMAD errors are 380 times worse than errors of RFC.

Comparison with WISE catalogue

There are 7187 matches with WISE (76%). 1- σ error **138 mas** (**102 mas**)

Comparison with 2MASS (point source catalogue)

There are 3426 matches with 2MASS, point source catalogue (36%).

1- σ error **162 mas** (**127 mas**)

Number of matches

γ -ray	Fermi:	15%
X-ray	Chandra	3%
infra-red	WISE:	76%
infra-red	2MASS:	36% (point sources)
infra-red	2MASS:	11% (extended sources)
optic	NOMAD:	62%
optic	Gaia:	20–40% (expectation)
optic	PanStarrs:	93% (unconfirmed)

Observed objects

9498 Active galaxy nuclea

Right ascension (mas) relative to 03:26:35.4184 Peak_lev= 0.042 Jy/beam Rms_noise= 0.1 mJy/beam Levels: 0.5, 1, 2, 4, 8, 17, 33 mJy/beam

Error analysis

- Thermal noise
- Phase jitter. SNR limit: $\sim 30-50$.
- Troposphere. Typically: 0.1–0.2 mas.
- Ionosphere. Negligible for dual-band. 0.1–10 mas for single-band obs.
- Source structure. Typically, 0.1–0.2 mas.
- Core shift. Fundamental limit: 0.2 mas

Bottom line:

- 1. Fundamental limit of accuracy is ${\sim}1$ nrad (0.2mas)
- 2. 20% sources reached that limit.

Observing campaigns

438 dedicated observing campaigns. Approximately 1 year on-source time.30 Tb visibility data.

Participating VLBI networks

Processing pipeline

- Automatic scheduling triggered by the array operator
- Correlation
- Coarse fringe fitting
- Bandpass calibration
- 1st fine fringe fitting
- Interactive analysis
- 2nd fine fringe fitting
- Interactive analysis
- re-fringing with a narrow window
- Final interactive analysis
- Imaging
- Coarse global solution
- Reweighting
- Final global solution

The RFC is updated on a quarterly basis.

Future work

- Further densification: VCS9 campaign: 5000 new targets.
 Goal: one RFC source per PanSTARRS field.
 At the moment, there are 22% PanSTARRS fields without an RFC source.
 By 2015.09.19, 130 new sources were added.
- VCS-R: Improvement of positions of 500–800 sources.
- VEPS: Ecliptic plane survey. Goal: reaching completeness at 50 mJy and position accuracy 1.5 nrad within $|\beta| < 7.5^{\circ}$.
- R&D: Breaking 1 nrad limit. Goal: improvement of accuracy down to 0.05 mas level for 20–100 sources.

Conclusions

- The radio fundamental catalogue has $\sim 10,000$ sources.
- Based on <u>all</u> suitable public available VLBI observations.
- Median position accuracy: 0.62 mas.
- Images are available for 76% sources.
- Complete at 170 mJy level at X-band.
- Updated on a quarterly basis.

http://astrogeo.org/rfc