ОЦЕНКА МАССЫ СПУТНИКОВ ПО ГРАВИТАЦИОННЫМ ВОЗМУЩЕНИЯМ В КОЛЬЦАХ САТУРНА

Довгалев¹ И.С., Питьев² Н.П.

1. Институт прикладной астрономии РАН

2. Санкт-Петербургский государственный университет

Пулково-2015

Прометей и кольцо F

PIA 0489

Моделирование возмущений

Численное интегрирование уравнений движения методом Эверхарта

Сатурноцентрическая система координат

Произвольное число тел, возможность задавать нулевые и ненулевые массы

Контроль интегрирования: интегралы площадей интеграл энергии

PIA 12537

Моделирование возмущений на снимке РІА 12537

Основные элементы, измеряемые при обработке снимков

Щель Keeler и спутник Daphnis

PIA 08319 Oct. 27, 2006

Daphnis(S/2005 S1) 1 мая 2005

PIA 06237

опициклические колеоапил малых частиц

кольца

Эпициклическая частота:

$$\varkappa^{2} = \frac{GM}{R^{3}} \left\{ 1 - \frac{3}{2} J_{2} \left(\frac{R_{p}}{r} \right)^{2} + \frac{45}{8} J_{4} \left(\frac{R_{p}}{r} \right)^{4} \right\}.$$

Орбитальная угловая скорость:

$$\omega^2 = \frac{GM}{R^3} \left\{ 1 + \frac{3}{2} J_2 \left(\frac{R_p}{r} \right)^2 - \frac{15}{8} J_4 \left(\frac{R_p}{r} \right)^4 \right\}.$$

Численное исследование

основным гравитационным полем является центральное поле Сатурна, сжатие Сатурна учитывается;

движение частиц происходит под действием гравитационных сил Сатурна и со стороны спутника (спутников) Сатурна;

≻частицы кольца имеют нулевую массу, то есть не возмущают спутник и не влияют на движение друг друга;

Эдвижение частиц до взаимодействия со спутником происходит по круговым орбитам;

взаимное смещение частицы и спутника рассматривается во вращающейся системе координат, синхронизированной с угловой скоростью вращения спутника.

Внутренний край щели (5 частиц на краю)

Внешний край щели (5 частиц на краю)

В действительности происходит «замывание» волн, так как в возмущенном колебании участвуют частицы не только на краю щели, но и находящиеся дальше по обе стороны щели. Амплитуда более удаленных быстро падает, но у частиц, достаточно близких краю, амплитуда выходит за границу щели.

Периоды колебаний у частиц, отстоящих от края щели, отличаются от «краевого» периода, и волны возмущения будут не только отличаться амплитудой, но и будут постепенно отходить от «краевой» волны. Будет постепенно происходить замывание волны возмущения и ее сглаживание.

Внутренний край щели (8 частиц, отстоящие по радиусу)

Внутренний край щели (8 частиц, отстоящие по радиусу)

Внешний край щели (8 частиц, отстоящие по радиусу)

Внешний край щели (8 частиц, отстоящие по радиусу)

18

Наблюдательные данные на сайтах: http://ciclops.org/ http://photojournal.jpl.nasa.gov/catalog/ Параметры колец: http://pds-rings.seti.org/Saturn/saturn_tables.html

Верхний край кольца А:	136780 км
Внешний край щели Keeler	136522 км
Внутренний край щели Keeler	136487 км

Данные по снимку PIA 06237

19

Расстояние

	от наружного края щели	15.1 км	
	от внутреннего края щели	19.9 км	
Амплитуд	(a		
	на наружном крае щели	5.7 км,	
	на внутреннем крае щели	2.9 км	
Угловое смещение вершины первого горба относительно спутника			
	на наружном крае	0°.0090	
	на внутреннем крае	0°.0154	

Зависимость для амплитуды

 $\mu_1 = 1.48 \cdot 10^{-13}$ массы Сатурна (по данным для внешнего края);

µ₂ = 1.63 ·10⁻¹³ массы Сатурна (по данным для внутреннего края).

µ₄ = 1.76 ·10⁻¹³ массы Сатурна (по данным для внутреннего края).

 $\mu_3 = 1.53 \cdot 10^{-13}$ массы Сатурна (по данным для внешнего края);

Зависимость для сдвига вершины первой волны

21

Предыдущие оценки массы Дафнис

2007
$$\mu = (1.48 \pm 0.21) \cdot 10^{-13} M_{Sat}$$
 Porco C.C., Thomas P.C.,
Weiss J.W., Richardson D.C.
Science, 318, 1602-1607
2009 $\mu = (1.20 \pm 0.30) \cdot 10^{-13} M_{Sat}$ Weiss J.W., Porco C.C.,
Tiscareno M.S. An. J., 138,
272-286
2010 $\mu = (1.35 \pm 0.26) \cdot 10^{-13} M_{Sat}$ Thomas P.C. Icarus, 208,
395-401

Оценка в этой работе:

2015
$$\mu = (1.60 \pm 0.23) \cdot 10^{-13} M_{Sat}$$

Заключение

Форма волны возмущения и ее постепенное замывание определяются колебаниями частиц, расположенных на разной глубине приграничного слоя и имеющих разные амплитуды и периоды.

Зависимость амплитуды колебаний края кольца и сдвига положения первой волны от массы спутника и расстояния позволяют получить оценку массы возмущающего спутника.

Полученная оценка массы спутника Дафнис равна:

 $\mu = (1.60 \pm 0.23) \cdot 10^{-13} M_{Sat}$

СПАСИБО

ЗА ВНИМАНИЕ

Максимальная амплитуда колебаний частиц в щели Keeler от разных спутников Сатурна

	GM	Полуось орбиты	амплитуда колебаний	
	km ³ /s ²	km	km	
Iapetus	120.524	3 560 851	0.00	
Titan	8978.19	1 221 865	0.33	
Rhea	154.07	527 068	0.04	
Dione	73.113	377 415	0.09	
Tethys	41.210	294 672	0.19	
Enceladus	7.210	238 037	0.21	
Mimas	2.530	185 539	0.23	
Janus	0.12758	151 460	0.33	
Epimetheus	0.03540	151 410	0.18	
Pandora	0.00905	141 720	0.05	
Prometheus	0.01045	139 380	0.20	
Atlas	0.00044	137 670	0.05	
Pan	0.00033	133 580	0.01	

PIA 10461

Моделирование возмущений на снимке РІА 10461

Движение частиц площадки

Внутренний край щели:

Внешний край щели:

