ЯВЛЯЕТСЯ ЛИ ЧЕТВЕРНАЯ ИЕРАРХИЧЕСКАЯ СИСТЕМА 17 ЛЕБЕДЯ ГРАВИТАЦИОННО СВЯЗАННОЙ?

<u> Л.Г.Романенко</u>

Главная (Пулковская) астрономическая обсерватория Российской Академии Наук
 Санкт-Петербург, Россия
 e-mail: Irom@gao.spb.ru

Всероссийская астрометрическая конференция «Пулково-2015» 21-25.09.2015 1

Наблюдения визуально-двойных звезд продолжают традиционные для Пулкова исследования в области звездной астрономии. В настоящее время Пулковская программа исследований двойных и кратных звезд включает 420 объектов, получено около 50 орбит, причем 40 орбит – впервые, исследования продолжаются. Многие двойные звезды нашей программы имеют наблюдения В.Я.Струве – первого директора Пулковской обсерватории. Полученные В.Я.Струве результаты для обеих пар (ADS 12913, ADS 12889) используются в настоящей работе наряду с данными современных наблюдений.

17 Cyg ABFG.

3

Примечания к рис.1:

- Исследуемый объект 17 Суд состоит из двух визуально-двойных звезд: широкой пары AB = ADS 12913 ($\varrho \sim 26''$) и тесной слабой пары FG = ADS 12889 ($\varrho \sim 2.8''$). Обе пары открыты В.Я. Струве, имеют номера в каталогах Айткена и Глизе.
- Обозначение FG для тесной пары появилось недавно в «Вашингтонском каталоге двойных звезд» (WDS). Этим обозначением мы и воспользуемся в данной работе. Остальные компоненты C, D и E в каталоге WDS комментируются, как оптические.
- Угловое расстояние между парами AB и FG около 800" (иерархическая система?).

Таблица 1. Общие данные о компонентах исследуемой кратной звезды 17 Судпі. $\pi_{\rm Hip} = 0.0471'' \pm 0.0003$

Comp	m_{V}	Sp	Mass	Vr	μx	μy	ADS
	1 ^m			km/s	mas/yr	mas/yr	(GL)
А	5.0	F7 V	1.21	+4.2	+023	-449	12913 A
В	8.6	K6 V	0.65	+4.8	+019	-447	(767.1) B
F	8.4	K3 V	0.73	+4.1			12889 A
G	8.5	K3 V	0.73	+4.7	}+042	-465	(765.4) B

С одной стороны, собственные движения компонент A, B и F (как и лучевые скорости) близки между собой, с другой стороны, разности их величин превосходят ошибки наблюдений. Т.о., физическая связь между парами AB и FG остается под сомнением Исследуемый объект, а именно – яркая компонента A (5m) плюс тесная пара FG (8m-8m), очень труден для фотографических наблюдений.

- Попытки получить нормальные изображения всех 4-х компонент на одну пластинку 26" рефрактора в Пулково оказались не очень удачными (получено только два нормальных места 1995 и 2005гг.).
- В этом году И.С.Измайловым нам переданы результаты ПЗС-наблюдений обеих пар (AB и FG) за 2003-2013гг. Кроме того, И.С.Измайлов передал нам ПЗС-кадры за 2007-2013гг. и предложил их измерить и обработать относительно опорных звезд с целью определения относительных положений широкой пары AF.
 - Полученные результаты ПЗС-наблюдений и стали основой нашего исследования.

Позиционные наблюдения пары АВ.

Примечания к рис2: Вся видимая дуга орбиты пары AB за указанный период составляет 4°. В условиях такой короткой дуги классические методы определения орбит не работают. Поэтому мы воспользовались методом А.А.Киселева – методом параметров видимого движения (ПВД).

Таблица 2. Параметры видимого (относительного) движения в исследуемых парах. T_0 $\Delta \theta$ Пара θ ψ μ 0 εψ Series εθ SQ εμ n 68.780 0.0096 349.8 1992AB 26.067 4.1 $\pm .002$ $\pm .008$ $\pm .0001$ ± 0.4 57 SCCD 20082.893 160.033 0.0325 112.3 FG 4.8 $\pm .002$ $\pm .013$ $\pm .0004$ 76 ± 0.8 CCD 801.211 235.251 0.0051 285.4 **AB-FG** 1992 0.1 $\pm .079 \pm .014 \pm .0038_8 \pm 37.9$ WCCD 18

Примечания к таблице 2:

В «Вашингтонском каталоге двойных звезд (WDS)» представлены 136 позиционных наблюдений яркой пары AB, 456 наблюдений тесной пары FG и 11 наблюдений широкой пары AF за последние 200 лет.

Для получения параметров видимого движения пары FG оказались достаточными результаты пулковских ПЗСнаблюдений. Для пары АВ мы добавили только самые надежные наблюдения XIXв.- наблюдения В.Я.Струве. Для пары AF пришлось использовать все данные каталога WDS плюс результаты пулковских ПЗС-наблюдений. Получение параметров видимого движения внешней пары AB-FG мы рассмотрим позднее. Т.о. ошибки указанных параметров оказались на хорошем уровне (для внутренних пар ABuFG). Параметр $\Delta \theta$ характеризует величину видимой дуги орбиты и составляет 4° для AB, ~5° для FG, 0.1° для AB-FG.

Позиционные наблюдения и ПВД-орбиты пары АВ.

Примечания к рис.3:

Обозначения: позиционные наблюдения по данным WDS показаны точками, визуальные наблюдения В.Я. Струве – треугольниками, ПЗС-наблюдения на 26" рефракторе Пулковской обсерватории – звездочками. Линиями обозначены эфемериды ПВД-орбит за период 1822-2013гг.: пунктирная (зеленая) соответствует минимально-возможной орбите ($\beta min = 0^\circ$), штриховые (красная и фиолетовая) — средним (β mdl = $\pm 29^\circ$, они совпадают), тонкие – максимально-возможным орбитам $(\beta max = \pm 78^\circ, \text{ они тоже совпадают}). Здесь <math>\beta - угол$ наклона вектора АВ к картинной плоскости на средний момент ТО, *βmdl* – среднее значение угла β при условии, что он лежит в интервале от 0 до в тах (для семейства ПВД-орбит). Опираясь на самые далекие по времени, но самые надежные наблюдения XIX века – наблюдения В.Я.Струве, мы считаем наиболее вероятными две орбиты при β mdl = $\pm 29^{\circ}$.

Семейство ПВД-орбит ADS 12913 AB.

12

Примечания к рис.4:

На этом слайде мы приводим 3 варианта из семейства возможных ПВД-орбит для пары AB: зеленая соответствует минимально-возможной орбите ($\beta min = 0^\circ$), красная – среднему значению $\beta mdl = +29^\circ$ и фиолетовая – среднему значению $\beta mdl = -29^\circ$. На отнаблюденной за 191 год дуге все орбиты семейства практически совпадают.

Семейство ПВД-орбит ADS 12889 (пары FG)

Примечания к рис.5:

Аналогичное семейство орбит для пары FG представлено на рис.5. Очевидно, что орбиты, соответствующие $\beta min = 0^\circ$ (зеленая) и $\beta = -16^\circ$ (фиолетовая) не удовлетворяют большинству наблюдений. Хорошо описывает все наблюдения только орбита при $\beta = +16^{\circ}$ (красная). Напоминаем, что это семейство орбит определено по короткой дуге порядка 5°, охватывающей только Пулковские ПЗСнаблюдения за 11 лет.

Сравнение орбит ADS 12889 (пары FG).

Примечания к рис.6:

На рисунке проведено сравнение нашей ПВДорбиты (красного цвета) с орбитами других авторов: Рабе (зеленая), Скардиа (голубая) и Содерхельма (синяя). Все орбиты хорошо согласуются между собой и удовлетворяют всем наблюдениям. Табл.3. Сравнение орбит исследуемых пар.

i Ω T Π Author (Pole) P ω e a NAME Пара AB (ADS 12913) Macca=1.86 19.55" 6202 0.62 252 144 119 -241 Romanenko $\pm 1.44 \pm 696 \pm .05 \pm 8 \pm 6 \pm 17 \pm 65$ (l=33, b=+03) 19.55" 6202 0.53 128 139 29 4869 Romanenko $\pm 1.44 \pm 696 \pm .09 \pm 5 \pm 6 \pm 12 \pm 4040$ (1=69, b=-37) Пара FG (ADS 12889) Macca=1.46 NAME 2.05 238 0.75 316 162 276 1946 Romanenko $\pm 0.10 \pm 19 \pm .02 \pm 17 \pm 8 \pm 18 \pm 5 (1=85, b=+11)$ 239 0.77 (307) 158 (270) 1945 Scardia 2.09 232 0.77 (308)(156) (271) 1945 Soderhjelm 2.00

Примечания к таблице 3:

В табл.3 мы приводим элементы орбит исследуемых пар: две равновероятные ПВДорбиты для пары АВ с периодом 6200 лет и однозначно-определенную ПВД-орбиту для пары FG с периодом 238 лет, хорошо согласующуюся с результатами других авторов.

В последнем столбце таблицы даны 1 и b – галактические долгота и широта направления на полюс орбиты. Как видно из таблицы, орбиты как пары AB, так и пары FG круто наклонены к плоскости Галактики (|b|<40°).

Позиционные наблюдения пары AF.

Примечания к рис.7:

Рис.7. На этом графике зелеными кружками показаны данные из WDS, красным крестиком – фотографические наблюдения в Пулкове, сиреневыми звездочками – пулковские ПЗСнаблюдения.

Очевидно, что здесь отражается как движение компоненты А относительно компоненты В, так и движение компоненты F относительно компоненты G. Исследование динамики внешней пары AB-FG

- Обозначим через О1 центр масс внутренней пары AB, а через О2 центр масс пары FG.
- В каталоге WDS приведено 11 положений пары AF за 1893-2002гг. Кроме того, мы получили еще 7 поло жений по пулковским ПЗС-кадрам за 2007-2013гг. На эти моменты времени мы вычислили эфемериды для пар AB и FG с использованием их ПВД-орбит.
- Зная массы компонент, можно получить координаты как центра тяжести О1 относительно компоненты А, так и центра тяжести О2 относительно компоненты F.

Несложные вычисления дают положения центра тяжести О2 относительно центра тяжести О1.

Прямоугольные координаты пары O1-O2 вычисляются по следующим формулам:

$$\begin{cases} x_{O1O2} = x_{AF} - x_{AO1} + x_{FO2} \\ y_{O1O2} = y_{AF} - y_{AO1} + y_{FO2} \end{cases}, \text{ free}$$

$$x_{AO1} = x_{AB} \cdot \frac{M_B}{M_A + M_B} \qquad x_{FO2} = x_{FG} \cdot \frac{M_G}{M_F + M_G}$$

$$y_{AO1} = y_{AB} \cdot \frac{M_B}{M_A + M_B} \qquad y_{FO2} = y_{FG} \cdot \frac{M_G}{M_F + M_G}$$

М - масса компоненты в единицах массы Солнца. Затем переходим к полярным координатам (0,0).

Эфемеридное движение пары АВ.

Рис.8 демонстрирует эфемеридное движение компоненты В и центра масс О1 (снизу вверх) относительно компоненты А согласно двум полученным ПВД-орбитам (они совпадают на интервале 1893 – 2013гг.).

Эфемеридное движение пары FG.

Рис.9: Движение пары FG (и центра масс O2) относительно компоненты A за период 1893 – 2013гг. В масштабе рис.9 положения компоненты B и центра масс O1 сливаются в соответствующую точку. Положения центра масс O2 относительно компоненты A также сливаются в одну точку на этом же интервале (получаем смазанный кружок). 25

Движение центра масс О2 относительно О1

20

Примечания к рис.10:

Рисунок показывает крупным планом полученное нами движение центра масс О2 относительно центра масс О1.

Видимые колебания в этом движении порядка 1.6" за 120 лет мы считаем кажущимися и объясняем их ошибками наблюдений.

Используя все имеющиеся 18 наблюдений, показанных на рис.10, мы оценили параметры видимого движения внешней пары O1O2 = AB– FG (см. табл.2) и ее минимально-возможную динамическую массу Mdyn = 2.5 ± 3.8 массы Солнца.

Таблица 2. Параметры видимого (относительного) движения в исследуемых парах. T_0 $\Delta \theta$ Пара θ ψ μ 0 εψ Series εθ SQ εμ n 68.780 0.0096 349.8 1992AB 26.067 4.1 $\pm .002$ $\pm .008$ $\pm .0001$ ± 0.4 57 SCCD 20082.893 160.033 0.0325 112.3 FG 4.8 $\pm .002$ $\pm .013$ $\pm .0004$ ± 0.8 76 CCD 801.211 235.251 0.0051 285.4 **AB-FG** 1992 0.1 $\pm .079 \pm .014 \pm .0038_2 \pm 37.9$ WCCD 18

Табл.4. Семейство орбит внешней пары AB-FG.

NAME Пара AB-FG Macca=1.86+1.46=3.32a P ω i Ω TΠ Pole (l,b) e 1.00 68 49 103 -10357 (297, -16) ∞ ∞ 2200" 5500000 0.77 48 26 99 -158763 (274, -13) 3700000 0.76 83 4 55 -151294 (251,-08) 1700 5500000 0.79 209 22 294 -159131 (227, -02) 2200 1.00 234 46 289 -13725 (203,+05) ∞ ∞

Примечания к табл.4:

Методом ПВД мы получили семейство возможных орбит внешней пары с периодами от 3.7 млн. лет, сильно вытянутых (эксцентриситеты от 0.76). Отметим, что все орбиты семейства круто наклонены к плоскости Галактики (| b | < 20°). Очевидно, что орбита столь широкой пары будет неустойчивой в поле Галактики.

Исследование динамики внешней пары AB-FC

- Для исследования вероятности физической связи в исследуемой внешней паре мы применили метод Монте-Карло.
- Исходные данные (ϱ, μ, π, М и ΔVr) варьировались в пределах их ошибок, было проведено 10000 испытаний и получено распределение энергии относительного движения AB-FG.
- Оказалось, что вероятность физической связи пар АВ и FG составляет 47%. Даже если исходную сумму масс увеличить вдвое, то эта вероятность составит только 73%. 31

Исследование динамики внешней пары AB-FC

- В рамках динамического исследования 17 Суд были измерены ПЗС-кадры наблюдений на 26-дюймовом рефракторе ГАО РАН за 2007-2013гг. (30 серий пары АВ, 42 серии пары FG). В связи с тем, что размер матрицы не позволяет наблюдать всю четверную систему целиком, были проведены измерения компонент относительно опорных звезд. Использована программа обработки izmccd. Методом наименыших квадратов вычислены точные положения всех компонент системы и их собственные движения на средний момент 2010.73. Собственные
 - движения, полученные для компонент А и В согласуются
 - с данными каталога UCAC4, отдельные результаты для компонент F и G выведены впервые. 32

Таблица 5. Собственные движения компонент 17 Cygni по ПЗС-наблюдениям (2007-2013гг.) на 26-дюймовом рефракторе Пулковской обсерватории и данные UCAC4.

	n	µx obs	µy obs	μx cat	μy cat	ADS
		mas/yr	mas/yr	mas/yr	mas/yr	(GL)
А	30	+009	-447	+023	-449	12913 A
В	30	+014	-436	+019	-447	(767.1) B
F	42	+008	-437	+ 0.12	465	12889 A
G	42	+034	-449) + 042	33	(765.4) B

Таблица 6. Собственные движения компонент 17 Cygni по ПЗС-наблюдениям (2007-2013гг.) на 26-дюймовом рефракторе Пулковской обсерватории и данные CNS3.

	n	µx obs	µy obs	Vr	U	V	W
		mas/yr	mas/yr	km/s	km/s	km/s	km/s
А	30	+009	-447	+4.2	+40	-9	-24
В	30	+014	-436	+4.8	+39	-8	-25
F	42	+008	-437	+4.1	} + 20	0	24
G	42	+034	-449	+4.7) + 39	34	-24

Примечания к табл.6:

Сходство собственных движений и лучевых скоростей всех компонент может свидетельствовать о принадлежности одному звездному потоку. Этот вывод подтверждают данные каталога Глизе (1991) - CNS3. В табл.7 мы приводим данные каталога CNS3 для звезд с близкими 17 Суд пространственными скоростями U, V и W.

Таблица 7. Данные каталога CNS3.

Ν	Name	alpha	delta	mV pi_tr spi	U V W		
	(1950.0)						
178	Gl 42.1	00 52 19 +	-23 49.9	7.38 0494 188	35 -4 -15		
559	Gl 125	03 06 09 +	-45 32.9	10.15 0767 114	32 -8 -22		
1060	NN	06 36 56 -	+28 38.2	11.93 (046 22 r)	45 -15 -15		
1134	Gl 266	07 04 32 +	-03 31.8	9.84 0423 103	38 -14 -21		
1488	Gl 343.1	09 24 20 -	+39 43.5	9.84 (044 06 r)	45 -12 -22		
1587	Gl 379 A	10 06 24 -	+75 23.0	10.18 0542 075	45 -2 -28		
1624	Gl 389 A	10 20 37	-59 55.1	10.72 0550 071	50 -11 -17		
2198	G1 532	13 50 01 -	+50 11.9	8.90 0686 070	31 -3 -35		
2367	G1 570 A	14 54 32	-21 11.5	5.75 1742 060	50 -22 -31		
2368	G1 570 B	14 54 31	-21 11.3	8.00 1742 060	43 -20 -29		
2622	Gl 632.1	16 34 52 -	+31 12.2	9.49 0605 107	36 0 -22		
2786	Gl 684 A	17 34 28 -	+61 54.8	5.34 0679 058	36 -5 -22		
3003	Wo 9643	19 03 49	-27 44.7	3.32 0431 102	46 -20 -17		
3098	Gl 765.4A	19 43 39 -	+33 29.1	8.35 0439 039	39 -8 -24		
3105	Gl 767.1A	19 44 32 +	-33 36.6	4.99 0444 025	40 -9 -24		
3106	Gl 767.1B	19 44 34 +	-33 36.8	8.56 0444 025	39 -8 -25		
3744	Wo 9835	23 39 38	-02 50.9	10.32 (043 08 r)	44,611 -32		

17 CygFG 17 Cyg A 17 Cyg B

Заключение 1

Методом ПВД получены орбиты двух визуальнодвойных звезд: ADS 12913 (GL 767.1) и ADS 12889 (GL 765.4) с периодами обращения 6200 и 238 лет соответственно. Проведено сравнение новой орбиты ADS 12889 (пары FG) с орбитами других авторов, орбиты ADS 12913 АВ получены впервые.

Приведена ориентация полюсов полученных орбит в галактической системе координат: все орбиты круто наклонены к плоскости Галактики. Получены параметры видимого движения внешней пары AB-FG.

Заключение 2

Весь комплекс данных для пары AB-FG (ПВД, сумма масс компонент, относительная лучевая скорость и параллакс) приводит к семейству возможных орбит, близких к параболической. - Методом Монте-Карло вычислена вероятность физической связи внешней пары =47%. Сходство собственных движений и лучевых скоростей всех компонент может свидетельствовать о принадлежности одному звездному потоку.

Требуются дальнейшие наблюдения и исследования.

СПИСОК ЛИТЕРАТУРЫ 1:

- 1. Л.Г.Романенко, А.А.Киселев, Астр.ж. **91**, 47 (2014).
- 2. B.D.Mason, G.L.Wycoff, W.I.Hartkopf, Washington Double Star Catalog USNO Double Star CD 2006.5.
- 3. F.van Leeuwen, Astron. & Astrophys., 474,653 (2007).
- 4. A.A.Tokovinin, Multiple Star Catalog, Astron. Astrophys. Suppl.Ser. **124**, 75, (1997).
- 5. A.A.Tokovinin, M.G.Smekhov, Astron. and Astrophys. **382**, 118 (2002).
- 6. Zacharias N., Finch C.T., et al., The fourth U.S. Naval Observatory CCD Astrograph Catalog (UCAC4), Astron. Journ. **145**, 44 (2013), http:// cdsarc.u-strasbg.fr/viz-bin/Cat?-source=I/322

СПИСОК ЛИТЕРАТУРЫ 2:

- 1. А.А.Киселев, О.В.Кияева, Астрон.ж. 57, 1227 (1980).
- 2. И.С.Измайлов, М.Л.Ховричева и др., Письма в Астрон.журн., **36**, 365 (2010).
- 3. M.Scardia, Astrophys.Nachr. 302, 291 (1981).
- 4. S.Soderhjelm, Astron. and Astrophys.341,121(1999).
- 5. И.С.Измайлов, Е.А.Рощина, Письма в Астрон. журн., (2015); http://izmccd.puldb.ru/vds.htm.
- Gliese Catalog of Nearby Stars, 3d edition (Gliese+, 1991)}, http://vizier.u-strasbg.fr/viz-bin/VizieR-2/Cat?-source=V/20A.

Автор выражает благодарности: авторам Вашингтонского каталога двойных звезд (WDS),

И.С.Измайлову за предоставленные ПЗС-кадры, В.В.Орлову, Е.А.Рощиной и О.В.Кияевой за ценные консультации, а также Е.В.Милецкому за обучение работы с программой Origin8.

 Людмила Георгиевна Романенко, раб. тел. (812) 363-70-37 , e-mail: < lrom@gao.spb.ru > ,

СПАСИБО ЗА ВНИМАНИЕ

AMP method

Space distance between components

$$r^{3} = \left| k^{2} \frac{\rho \rho_{c}}{\mu^{2}} \sin(\psi - \theta) \right| \quad [AU^{3}]$$

 $k^2 = 4 \pi^2 (M_A + M_B) [AU^3/yr^2]$

$$\cos\beta = \frac{\rho}{r\pi_{\rm t}}$$

Space relative velocity

$$\mathbf{v}^2 = \left(\frac{\mu}{\pi_{\rm tr}}\right)^2 + \left(\frac{\Delta V_r}{4.74}\right)^2$$

 $tg\gamma = \frac{\Delta Vr}{4.74} \cdot \frac{\mu}{\pi_t}$

If it is impossible to determine ρ_c , then we obtain family of orbits according to the condition:

$$\frac{\rho}{\pi} < r < \frac{2k^2}{v^2}$$

13

Эволюционные треки.

