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Аннотация
Посредством вычисления характеристических показателей Ляпунова в иерархической за-

даче трех тел («звезда – планета – спутник планеты») проведен анализ применимости ряда
критериев для оценки максимально возможной величины большой полуоси орбиты спутни-
ка acs , соответствующей его долговременной устойчивой орбитальной динамике. Показано, что
часто используемый для определения потенциально возможных орбит экзолун (спутников эк-
зопланет) эмпирический критерий из работы (Domingos, Winter, Yokoyama, 2006) существенно
завышает величину acs . В плоской задаче для проградной орбиты экзолуны при оценке acs сле-
дует использовать критерий, предложенный Rosario-Franco et al. (2020), для ретроградной
орбиты экзолуны — критерий из работы (Quarles et al. 2021). Если наклон орбиты экзолу-
ны к плоскости орбиты планеты существенен, оценку acs можно получить путем численного
моделирования долговременной орбитальной динамики экзолуны и использованием строгих
методов анализа устойчивости движения (вычисление характеристических показателей Ля-
пунова, параметра MEGNO и пр.).
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Введение

В настоящее время одной из наиболее актуальных задач астрономии является поиск спутников
экзопланет — экзолун (D. M. Kipping, 2009; Heller et al. 2014; Teachey, 2024). Важность этой
задачи обусловлена тем, что число потенциально существующих экзолун должно быть весьма
существенным. В Солнечной системе, состоящей из 8 планет, число открытых спутников уже
почти достигло пяти сотен. Причем число спутников у планет-гигантов составляет от несколь-
ких десятков до двух сотен. Немаловажным обстоятельством является и то, что на спутнике
планеты-гиганта, находящегося в зоне потенциальной обитаемости родительской звезды, могут
существовать подходящие для жизни условия (Heller et al. 2014; Williams, Kasting, Wade, 1997;
Heller, 2012).

Существенный прогресс, достигнутый в последнее десятилетие в развитии методов наблю-
дений и последующего анализа высокоточных наблюдательных данных, позволил выявить ряд
кандидатов в экзолуны. В работе (Teachey, D. M. Kipping, Schmitt, 2018) был представлен первый
кандидат в экзолуны у планеты Kepler-1625b. Fox, P. Wiegert (2021) указали на восемь планет-
ных систем, в которых присутствуют наблюдательные признаки наличия спутников. Недавно D.
Kipping et al. (2022) отметили возможность существования спутника у планеты Kepler-1708b.

Долговременная орбитальная динамика для спутника, реально существующего в планетной
системе, должна быть устойчивой. Численное моделирование, а именно исследование устойчи-
вости движения (подробнее о методах см. Morbidelli, 2002; Shevchenko, 2020) позволяет оценить
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возможность обнаружения экзолун из анализа наблюдений и получить/уточнить информацию
об орбитальных и физических параметрах выявленных кандидатов в экзолуны. Анализ устой-
чивости долговременной орбитальной динамики перечисленных выше кандидатов в экзолуны
проводился нами ранее (Melnikov, 2022; Melnikov, 2023). В настоящей работе мы рассмотрим ряд
критериев, полученных различными исследователями, для определения максимального размера
устойчивой орбиты экзолуны. Зная возможный размер орбиты экзолуны можно оценить веро-
ятность ее наблюдательной идентификации. Посредством вычисления максимального характе-
ристического показателя Ляпунова (ХПЛ) на представительных множествах начальных условий
для орбитальных параметров экзопланеты и ее спутника проведем оценку применимости рас-
сматриваемых критериев.

1 КРИТИЧЕСКАЯ ВЕЛИЧИНА БОЛЬШОЙ ПОЛУОСИ
ОРБИТЫ СПУТНИКА ПЛАНЕТЫ

1.1 Устойчивость орбитальной динамики экзолуны

Далее будем рассматривать иерархическую задачу трех тел — «звезда – планета – спутник
планеты». Предполагаем для масс звезды M , планеты mp и спутника планеты (экзолуны) ms:
M ≫ mp ≫ ms. Расстояние «планета – спутник»: rs = as(1− e2s )/(1+ es cos fs), где as и es — боль-
шая полуось и эксцентриситет орбиты спутника, fs — истинная аномалия. Согласно (Murray,
Dermott, 1999), орбита реально существующего спутника планеты должна соответствовать сле-
дующим условиям (см. Рис. 1) :

• находиться вне сферы Роша планеты (rs > RR)

RR ≈ 2.4Rp

(
ρp
ρs

)1/3

, (1)

где Rp, ρp — радиус и плотность планеты, ρs — плотность спутника,

• находиться внутри сферы Хилла планеты (rs < RH)

RH ≈ ap(1− ep)
(mp

3M

)1/3
, (2)

где ap и ep — большая полуось и эксцентриситет орбиты планеты,

• быть устойчивой.

Под устойчивой орбитой обычно подразумевается, что на весьма длительном интервале вре-
мени спутник не разрушится и столкнется с планетой (не пересечет сферу Роша) и не выйдет
из сферы Хилла планеты. Значительное число исследований (см. далее) посвящено определению
критической величины большой полуоси орбиты спутника — acs при превышении которой (as > acs)
его орбитальная динамика является неустойчивой. Можно предположить (Holman, P. A. Wiegert,
1999)

acs ∝ αRH, (3)

где α — искомый коэффициент. Величина α будет различна для прямых (проградных) орбит спут-
ника, когда направления орбитального движения планеты и спутника совпадают (см. Рис. 1) и
ретроградных (обратных) орбит спутника — направления орбитальных движений указанных тел
противоположны. Как уже отмечалось, величина α определялась многими авторами в различных
постановках задачи трех тел. Далее перечислим ряд из этих работ.

В работах Чеботарева (1961–1965, см. ссылки в Hunter, 1967) и Hunter (1967) на основе чис-
ленного анализа орбитальной динамики спутников Юпитера установлено (согласно Domingos,
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Рис. 1: Слева: схематическое изображение области существования (серая заливка) спутника пла-
неты. Указаны радиусы сфер Роша (RR) и Хилла (RH) планеты. Справа: схематическое изобра-
жение прямой и ретроградной орбит спутника.

Winter, Yokoyama, 2006), что для проградных орбит α = 0.44, ретроградных — α = 0.74. Рас-
смотрев в рамках плоской круговой ограниченной задачи трех тел динамику далекого (т.е. воз-
мущения в движении со стороны Солнца существенны) спутника астероида Hamilton, Krivov
(1997) показали, что для потенциально возможных проградных орбит спутника α = 0.3, ретро-
градных — α = 0.69. В работе (Holman, P. A. Wiegert, 1999) рассматривалась динамика планет
в двойных звездных системах, однако полученные результаты могут быть применимы и в зада-
че о динамике экзолуны. Для проградной орбиты (ретроградные орбиты не рассматривались)
в (Holman, P. A. Wiegert, 1999) было получено α = 0.36. Barnes, O’Brien (2002) в численных
экспериментах по исследованию устойчивости долговременной орбитальной динамики гипотети-
ческого спутника внесолнечной планеты-гиганта также полагали α = 0.36 для проградных орбит,
а для ретроградных орбит приняли α = 0.50. Последняя оценка была получена на основе анализа
известных размеров орбит ряда ретроградных спутников планет Солнечной системы. В цикле ра-
бот (Donnison, 2010; Donnison, 2014; Donnison, 2020) были рассмотрены ограничения на размеры
орбит у возможных спутников планет-гигантов.

В работе Domingos, Winter, Yokoyama (2006), ставшей в своем роде классической для задачи
об устойчивости орбитальной динамики экзолун, были получены эмпирические критерии устой-
чивости для проградных (α = 0.4895) и ретроградных (α = 0.9309) орбит экзолуны. Указанные
критерии в дальнейшем использовались и продолжают использоваться многими авторами. В ра-
боте (Weidner, Horne, 2010) на основе этих критериев были получены оценки размеров орбит
и масс экзолун, потенциально существующих в ряде планетных систем. Недавно критерии из
(Domingos, Winter, Yokoyama, 2006) использовался в работе (Dobos et al. 2022) при составлении
списка планет, где могут существовать потенциально обитаемые экзолуны. Критерии, получен-
ные Domingos, Winter, Yokoyama (2006), часто используются для определения границ областей
возможных значений параметров в численных симуляциях орбитальной динамики экзолун (см.,
например, Hansen (2023)). Они применялись в (Dencs, Dobos, Regály, 2025) при моделировании
процесса образования экзолун из протопланетного диска и оценке параметров их обитаемости.

Cuntz et al. (2013), рассматривая устойчивость орбитальной динамики потенциально суще-
ствующей экзолуны в зоне обитаемости планеты HD 23079b, указали, что критерий Domingos,
Winter, Yokoyama (2006) хорошо определяет acs для проградных орбит, но для ретроградных орбит
дает неточные оценки. К аналогичным выводам пришли Payne et al. (2013), причем эти выводы
были сделаны на основе анализа устойчивости, проведенного путем вычисления характеристи-
ческих показателей Ляпунова (см. обсуждение далее). Недавно в работах (Rosario-Franco et al.
2020) и (Quarles et al. 2021) были получены новые критерии устойчивости: для проградных орбит
экзолун α = 0.4031, для ретроградных — α = 0.6684.
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1.2 Эмпирические критерии устойчивости

Приведем здесь ряд критериев устойчивости долговременной орбитальной динамики спутника
экзопланеты, полученных различными авторами. Для проградной орбиты экзолуны в работе
(Domingos, Winter, Yokoyama, 2006) получено

acs ≈ 0.4895RH (1.0000− 1.0305ep − 0.2738es). (4)

Позднее Rosario-Franco et al. (2020) установили для прямой орбиты

acs ≈ 0.4031RH (1.0000− 1.1230ep − 0.1862es). (5)

Для ретроградной орбиты экзолуны Domingos, Winter, Yokoyama (2006) получили

acs ≈ 0.9309RH (1.0000− 1.0764ep − 0.9812es + 0.9446epes). (6)

В работе (Quarles et al. 2021) для ретроградной орбиты найдено

acs ≈ 0.6684RH (1.000− 1.236ep). (7)

Далее посредством использования строгого критерия для анализа устойчивости движения —
вычисления характеристических показателей Ляпунова (ХПЛ) — рассмотрим применимость при-
веденных выше критериев. Отметим, что в работе Payne et al. (2013) критерии из (Domingos,
Winter, Yokoyama, 2006) использовались для верификации численных алгоритмов вычисления
ХПЛ в рамках задачи четырех тел (звезда, две планеты, спутник планеты). В следующем разделе
приведено краткое определение ХПЛ и даны результаты проведенных численных экспериментов.

2 ЧИСЛЕННЫЕ ЭКСПЕРИМЕНТЫ

2.1 Характеристические показатели Ляпунова

Рассмотрим две близкие по начальным условиям траектории фазового пространства динамиче-
ской системы (см. Рис. 2). Одну из траекторий будем называть «опорной», другую — «теневой».
Пусть d(t0) — длина вектора смещения d, направленного от опорной траектории к теневой, в
начальный момент времени t0, d(t) — длина этого вектора в произвольный момент времени t.
Тогда ХПЛ определяется формулой (Morbidelli, 2002; Shevchenko, 2020):

L = lim
t→∞

d(t0)→0

1

t− t0
ln

d(t)

d(t0)
(8)

и представляет собой среднюю скорость экспоненциальной расходимости близких (по начальным
условиям) траекторий фазового пространства.

Системе с N степенями свободы может быть поставлен в соответствие набор из 2N посто-
янных — характеристических показателей Ляпунова: Li ≥ Li+1, где i = 1, . . . , 2N − 1. В случае
автономной (не зависящей от времени) гамильтоновой системы по крайней мере два из 2N показа-
телей равны нулю. Ненулевые показатели разбиваются на пары равных по абсолютной величине,
но противоположных по знаку показателей Li = −Li+N , где i = 1, . . . , N . Численные алгоритмы
определения ХПЛ были изложены в работах (Benettin, Galgani, Strelcyn, 1976; Benettin, Galgani,
Giorgilli et al. 1980).

Ненулевая величина максимального ХПЛ (МХПЛ) указывает на хаотический (неустойчивый),
а нулевая — на регулярный (устойчивый) характер движения. Зная величину МХПЛ L ≡ L1

можно определить ляпуновское время (характерное время предсказуемой динамики системы),
полагая для него (Shevchenko, 2024) TL = 1/L. В настоящей работе мы оценивали ляпуновское
время орбитальной динамики спутника экзопланеты посредством вычисления МХПЛ численным
методом, представленным в (von Bremen, Udwadia, Proskurowski, 1997) и реализованном в виде
программного комплекса на языке ФОРТРАН в работе (Shevchenko, Kouprianov, 2002). Подробнее
о методах получения численных и аналитических оценок МХПЛ в задачах небесной механики
см. (Morbidelli, 2002; Shevchenko, 2020).
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Рис. 2: Две близкие по начальным условиям траектории фазового пространства — «опорная» (а)
и «теневая» (б); d — вектор смещения.

2.2 Анализ применимости эмпирических критериев устойчивости

Проведем оценку применимости эмпирических критериев устойчивости (4)–(7) для исследования
динамики спутников экзопланет. Для этого оценим ляпуновские времена орбитальной динамики
экзолуны на множествах возможных значений (as, is) и (as, ep) при es = 0 и 0.1. Для параметров
планетной системы были приняты следующие значения: M = 1 (в массах Солнца), mp = 0.001M ,
ms = 3 · 10−6M . Начальные параметры орбит: ap = 1 а.е., ip = ϖp = Ωp = 0, ϖs = Ωs =
0. Предполагалось, что в начальный момент времени планета расположена в перицентре своей
орбиты — средняя аномалия Mp = 0. Оценки величины ляпуновского времени (вычисление
МХПЛ) проводились для четырех возможных начальных значений средней аномалии экзолуны:
Ms = 0◦, 45◦, 90◦, 135◦. Для построения диаграмм устойчивости и при дальнейшем анализе
использовались наименьшие из оценок ляпуновского времени, полученных на данной выборке
начальных значений Ms.

Численные эксперименты проводились с использованием интегратора DOP853 (Hairer,
Norsett, Wanner, 1993), реализующего явный метод Рунге–Кутты 8-го порядка. Интервал вре-
мени интегрирования уравнений движения для вычисления МХПЛ составлял t = 105 лет;
максимальный шаг интегрирования был принят равным ∆tmax = 10−2 года, величина локаль-
ной (на одном шаге) погрешности интегрирования ε = 10−12. На основе заданного значения ε
интегратор DOP853 автоматически подбирает необходимую величину шага интегрирования, не
превышающую ∆tmax (см. подробнее Hairer, Norsett, Wanner (1993)).

Орбита экзолуны считалась неустойчивой и численное интегрирование останавливалось, если
происходило тесное сближение/столкновение с планетой, либо экзолуна покидала сферу Хилла
планеты (as ≥ RH). Факт тесного сближения/столкновения экзолуны с планетой фиксировал-
ся при уменьшении as до величины, равной радиусу сферы Роша планеты (as ≤ RR), либо при
изменении относительной энергии системы «планета–экзолуна» ∆E ≥ 10−7 (величина опреде-
лена эмпирически). Численные эксперименты показали, что при тесном сближении интегратор
DOP853 автоматически существенно уменьшает величину шага интегрирования. При достиже-
нии указанного значения ∆E наблюдается замедление хода интегрирования задолго до момента
достижения спутником сферы Роша. Критерий, основанный на оценке изменения ∆E, позволил
существенно ускорить процесс численной оценки устойчивости динамики спутника. Отметим, что
в случае устойчивой динамики при интегрировании на промежутке времени 105 лет изменение
энергии ∆E ≤ 10−10. Если интегрирование успешно завершалось при достижении конца задан-
ного промежутка времени, то вывод об устойчивости орбитальной динамики экзолуны делался
на основе определенной для нее величины ляпуновского времени TL.

Ляпуновские времена вычислялись на множестве начальных значений (as, is), заданном путем
наложения равномерной сетки 100 × 100 на область 0.1RH ≤ as ≤ 0.8RH, 0◦ ≤ is ≤ 180◦. Для
множества начальных значений (as, ep) использовалась равномерная сетка 30 × 30, наложенная
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на область:

• 0 ≤ ep ≤ 0.8, 0.1RH ≤ as ≤ 0.6RH при is = 0◦ (прямая орбита экзолуны);

• 0 ≤ ep ≤ 0.8, 0.1RH ≤ as ≤ 0.8RH при is = 180◦ (ретроградная орбита экзолуны).

Начальные значения параметров орбит, соответствовали узлам указанных выше сеток.
Для разделения орбит на выборке начальных значений параметров на устойчивые и неустой-

чивые путем анализа вычисленных значений ляпуновских времен использовался метод, пред-
ложенный в (Mel’nikov, Shevchenko, 1998). Метод основан на анализе распределения величин
МХПЛ, вычисленных на множестве начальных данных либо множестве значений параметров.
Из представленных на Рис. 3 примеров распределений значений ляпуновских времен TL, вы-
численных для разных t на множестве (as, is) при es = 0, видно, что уже на интервале инте-
грирования t = 104 лет можно разделить устойчивые и неустойчивые орбиты. Распределения
строилось путем подсчета числа орбит F экзолуны с величинами TL попадающими в ячейку (TL,
TL +∆TL), где было положено ∆TL = 100 лет при t = 104 лет и ∆TL = 500 лет при t = 105 лет.
Видно, что с ростом промежутка времени, на котором вычисляются МХПЛ, правый пик в рас-
пределении, соответствующий регулярным (устойчивым) орбитам экзолуны, смещается в сторону
увеличения значений TL. Далее мы предполагали, что динамика экзолуны является устойчивой
при TL ≥ 6000 лет.
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Рис. 3: Дифференциальные распределения значений ляпуновских времен (в годах) TL, вычис-
ленных на одной выборке начальных условий но на промежутках времени интегрирования t (в
годах) разной длины, для спутниковой системы планеты.

На Рис. 4 представлены построенные нами на плоскости (as, is) диаграммы устойчивости для
ep = 0 и двух значений es = 0 и 0.1. На рисунке вертикальными линиями отмечены приведенные
выше эмпирические критерии (4)–(7). Отметим, что горизонтальная область из неустойчивых
орбит при 60◦ < is < 120◦ связана с резонансом Лидова–Козаи (см. подробнее Shevchenko (2017)).
На Рис. 5 в увеличенном масштабе (по сравнению с Рис. 4) приведены диаграммы для прямых и
ретроградных орбит экзолуны в случае ep = es = 0.

В работе (Grishin et al. 2017) для иерархической системы трех тел была построена полино-
миальная аппроксимация зависимости положения границы области устойчивости от взаимного
наклона орбит. Ее можно адаптировать и для случая динамики экзолуны (см. также Hamers et
al. 2018). В нашей задаче имеем (Grishin et al. 2017; Hamers et al. 2018):

acs(is) = ffudgeRH g(is)
−2/3 p(is). (9)
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Рис. 4: Ляпуновские времена (в годах) спутниковой подсистемы, вычисленные на множестве
начальных условий (as, is) для ep = 0 и es = 0, 0.1. Белый цвет соответствует неустойчивым
орбитам экзолуны. Штриховой линией, линией из точек и штрих-пунктирной линией отмечены
эмпирические критерии (4)–(7) для максимальной величины as, соответствующей устойчивой
динамике спутника планеты. Непрерывная кривая на левой панели соответствует зависимости
(9).

где
g(is) = cos is +

√
3 + cos2 is,

полагая величину is в радианах, при 0.867 < is < 2.41

p(is) = 0.35161117i4s − 2.431451i3s + 6.54177136i2s − 8.01396441is + 4.40019183,

иначе p(is) = 1 (см. пояснение в Hamers et al. 2018). Для масштабного множителя было принято
ffudge = 0.87, чтобы зависимость (9) при is = 0 соответствовала нашим численным результатам.
Зависимость (9) нанесена на Рис. 4 и 5.

Анализ построенных диаграмм устойчивости показывает, что во всех случаях критерий для
ретроградной орбиты (6) экзолуны дает существенно завышенные оценки acs (во всех случаях
acs > 0.8RH), поэтому он не отмечен на рисунках. В случае прямой орбиты экзолуны критерий
(4) также дает завышенные оценки acs . Предложенный Rosario-Franco et al. (2020) критерий (5)
для прямой орбиты позволяет достаточно точно оценить величину acs для малых наклонов ор-
биты экзолуны к плоскости орбиты родительской планеты (is ≤ 10◦) и может быть использован
в плоской задаче. Отметим, что с ростом es область, занятая на плоскости (as, is) устойчивыми
заметно изменяется (см. Рис. 4). Критерий (7), предложенный Quarles et al. (2021) для ретроград-
ной орбиты экзолуны, не учитывает es, он завышает (см. Рис. 4) оценки acs если орбита экзолуны
существенно отличается от круговой. Однако для ретроградных орбит экзолун близких к круго-
вым критерий (7) позволяет весьма точно оценивать acs при 150◦ < is ≤ 180◦.

Что касается зависимости (9), полученной в работе (Grishin et al. 2017), то она хорошо аппрок-
симирует границу области устойчивости при is < 50◦ − 60◦ и сильно завышает ее границы при
других наклонах орбиты (см. также Рис. 4 в Hamers et al. 2018). Отметим, что в работе (Hamers
et al. 2018) путем численного интегрирования на длительном интервале времени динамики ряда
реальных планетных систем были построенные диаграммы устойчивости на плоскости (as, is).
Они имеют схожий вид с диаграммами, приведенными на Рис. 4, однако последние получены
нами путем использования строгого критерия устойчивости — вычисления МХПЛ.

Большинство орбит крупных (средний радиус фигуры более 500 км) спутников планет Сол-
нечной системы имеют малые наклоны орбит (см. обсуждение в Melnikov, Shevchenko, 2022), в
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экзопланетных системах вероятно имеет место такая же конфигурация. В то же время значитель-
ная часть экзопланет имеет существенные эксцентриситеты — согласно современным данным с
сайта http://exoplanet.eu/ для 950 планет (около 15% известных экзопланет) ep > 0.2. Поэто-
му далее рассмотрим зависимость acs от ep для плоского случая (плоскости орбит планеты и ее
спутника совпадают).
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Рис. 5: Ляпуновские времена (в годах) спутниковой подсистемы, вычисленные на множестве на-
чальных условий (as, is) для ep = es = 0 (круговые начальные орбиты). По сравнению с Рис. 4
увеличен масштаб по осям. Белый цвет соответствует неустойчивым орбитам экзолуны. Штри-
ховой линией, линией из точек и штрих-пунктирной линией отмечены эмпирические критерии
(4)–(7) для максимальной величины as, соответствующей устойчивой динамике спутника плане-
ты. Непрерывная кривая на левой панели соответствует зависимости (9).

На Рис. 6 представлены полученные нами на множестве начальных условий (as, ep) диаграм-
мы устойчивости для случая прямой is = 0◦ и ретроградной is = 180◦ орбит экзолуны при es = 0
и 0.1. На рисунке наклонными линиями отмечены все приведенные выше эмпирические критерии
(4)–(7). Из рисунка видно, что, как уже было отмечено нами ранее, критерии (5) и (7) хорошо
оценивают величину acs , а критерии, предложенные в работе (Domingos, Winter, Yokoyama, 2006),
заметно завышают значения acs .

ВЫВОДЫ

В настоящей работе мы рассмотрели ряд критериев для оценки максимально возможного раз-
мера орбиты спутника планеты (критической величины большой полуоси орбиты спутника acs),
соответствующей устойчивой долговременной динамике. Эмпирические критерии для оценки acs
в иерархической задаче трех тел (звезда — планета — спутник планеты) были получены ранее
в нескольких работах (Domingos, Winter, Yokoyama, 2006; Rosario-Franco et al. 2020; Quarles et
al. 2021) и активно используются в настоящее время для оценок возможных параметров кан-
дидатов в спутники экзопланет — экзолун. Посредством использования строгого критерия для
определения характера устойчивости движения — вычисления характеристических показателей
Ляпунова (ХПЛ) мы оценили применимость ряда полученных ранее критериев оценки acs в зада-
чах о долговременной динамике экзолун. Установлено, что критерии, предложенные Domingos,
Winter, Yokoyama (2006) завышают величину as и не могут быть рекомендованы для использова-
ния. Для случая прямых орбит экзолун при малых наклонах к плоскости орбиты родительской
планеты (is ≤ 10◦) можно использовать критерий, предложенный Rosario-Franco et al. (2020).
В случае ретроградной орбиты экзолуны для малых наклонов (150◦ < is ≤ 180◦) и близких к
круговым орбитам успешно работает критерий оценки acs из работы (Quarles et al. 2021). Если ор-
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Рис. 6: Ляпуновские времена (в годах) спутниковой подсистемы, вычисленные на множестве
начальных условий (as, ep) для различных значений is (указаны на врезках); принято es = 0. Бе-
лый цвет соответствует неустойчивым орбитам экзолуны. Штриховой линией, линией из точек и
штрих-пунктирной линией отмечены эмпирические критерии (4)–(7) для максимальной величи-
ны as, соответствующей устойчивой динамике спутника планеты.

бита экзолуны существенно наклонена к плоскости орбиты родительской планеты (10◦ < is < 60◦

или 120◦ < is < 150◦) рассмотренные критерии не позволяют получить точную оценку as. Оцен-
ку возможных значений орбитальных параметров экзолуны при существенных наклонах орбиты
следует проводить посредством использования строгих методов исследования устойчивости дви-
жения — вычисления ХПЛ, параметра MEGNO и пр. (см., например, Patel, Quarles, Cuntz, 2025).
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Abstract
By calculating the Lyapunov characteristic exponents in the hierarchical three-body problem

(“star – planet – moon”), an analysis was made of the applicability of a number of criteria for
estimating the maximum possible value of the semi-major axis of a satellite’s orbit acs , corresponding
to its long-term stable dynamics. It is shown that the empirical criterion from (Domingos, Winter,
Yokoyama, 2006), often used to determine potential orbits of exomoons (satellites of exoplanets),
significantly overestimates the value of acs . In the planar problem for a prograde exomoon orbit,
when estimating acs , the criterion proposed by Rosario-Franco et al. (2020) should be used. For a
retrograde exomoon orbit, the criterion from (Quarles et al., 2021) should be used. If the inclination
of the exomoon’s orbit to the planet’s orbital plane is significant, an estimate of acs can be obtained
by numerically modeling the exomoon’s long-term orbital dynamics and using rigorous stability
analysis methods (calculating Lyapunov characteristic exponents, the MEGNO parameter, etc.).
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